Properties

Label 167.1.2.1a1.2
Base Q167\Q_{167}
Degree 22
e 22
f 11
c 11
Galois group C2C_2 (as 2T1)

Related objects

Downloads

Learn more

Defining polynomial

x2+835x^{2} + 835 Copy content Toggle raw display

Invariants

Base field: Q167\Q_{167}
Degree dd: 22
Ramification index ee: 22
Residue field degree ff: 11
Discriminant exponent cc: 11
Discriminant root field: Q167(167)\Q_{167}(\sqrt{167})
Root number: i-i
Aut(K/Q167)\Aut(K/\Q_{167}) ==Gal(K/Q167)\Gal(K/\Q_{167}): C2C_2
This field is Galois and abelian over Q167.\Q_{167}.
Visible Artin slopes:[ ][\ ]
Visible Swan slopes:[ ][\ ]
Means: \langle\ \rangle
Rams:( )(\ )
Jump set:undefined
Roots of unity:166=(1671)166 = (167 - 1)

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and Q167\Q_{ 167 }.

Canonical tower

Unramified subfield:Q167\Q_{167}
Relative Eisenstein polynomial: x2+835 x^{2} + 835 Copy content Toggle raw display

Ramification polygon

Residual polynomials:z+2z + 2
Associated inertia:11
Indices of inseparability:[0][0]

Invariants of the Galois closure

Galois degree: 22
Galois group: C2C_2 (as 2T1)
Inertia group: C2C_2 (as 2T1)
Wild inertia group: C1C_1
Galois unramified degree: 11
Galois tame degree: 22
Galois Artin slopes: [ ][\ ]
Galois Swan slopes: [ ][\ ]
Galois mean slope: 0.50.5
Galois splitting model:x2167x^{2} - 167