Normalized defining polynomial
\( x^{20} - x^{19} - 253 x^{18} - 24544 x^{17} + 398685 x^{16} + 8721545 x^{15} - 70361823 x^{14} + \cdots + 11\!\cdots\!96 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(526792882835395388103720314122737484676904390310681994000000000000000\)
\(\medspace = 2^{16}\cdot 5^{15}\cdot 13^{15}\cdot 197^{16}\)
|
| |
| Root discriminant: | \(2729.49\) |
| |
| Galois root discriminant: | $2^{4/5}5^{3/4}13^{3/4}197^{4/5}\approx 2729.493063361952$ | ||
| Ramified primes: |
\(2\), \(5\), \(13\), \(197\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{65}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}$, $\frac{1}{10}a^{12}-\frac{1}{5}a^{11}+\frac{1}{5}a^{9}-\frac{1}{5}a^{8}-\frac{1}{5}a^{7}-\frac{1}{2}a^{6}+\frac{1}{5}a^{4}-\frac{2}{5}a^{3}+\frac{2}{5}a^{2}-\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{10}a^{13}+\frac{1}{10}a^{11}+\frac{1}{5}a^{10}+\frac{1}{5}a^{9}+\frac{2}{5}a^{8}+\frac{1}{10}a^{7}-\frac{3}{10}a^{5}-\frac{2}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{60}a^{14}+\frac{1}{30}a^{13}+\frac{1}{30}a^{12}+\frac{1}{30}a^{11}-\frac{3}{20}a^{10}-\frac{1}{6}a^{9}-\frac{7}{15}a^{8}+\frac{7}{60}a^{6}-\frac{1}{10}a^{5}-\frac{1}{30}a^{4}+\frac{1}{30}a^{3}-\frac{1}{3}a^{2}-\frac{1}{10}a-\frac{1}{3}$, $\frac{1}{60}a^{15}-\frac{1}{30}a^{13}-\frac{1}{30}a^{12}-\frac{13}{60}a^{11}+\frac{2}{15}a^{10}-\frac{2}{15}a^{9}-\frac{1}{15}a^{8}+\frac{7}{60}a^{7}-\frac{1}{3}a^{6}+\frac{1}{6}a^{5}+\frac{1}{10}a^{4}-\frac{2}{5}a^{3}-\frac{13}{30}a^{2}-\frac{2}{15}a-\frac{1}{3}$, $\frac{1}{180}a^{16}-\frac{1}{180}a^{15}-\frac{1}{90}a^{13}+\frac{1}{36}a^{12}-\frac{7}{36}a^{11}-\frac{4}{45}a^{10}-\frac{17}{90}a^{9}-\frac{7}{20}a^{8}-\frac{29}{60}a^{7}-\frac{23}{90}a^{6}+\frac{1}{90}a^{5}-\frac{7}{18}a^{4}-\frac{41}{90}a^{3}-\frac{29}{90}a^{2}-\frac{1}{9}$, $\frac{1}{180}a^{17}-\frac{1}{180}a^{15}+\frac{1}{180}a^{14}-\frac{1}{20}a^{13}-\frac{1}{30}a^{12}-\frac{1}{20}a^{11}-\frac{23}{180}a^{10}-\frac{37}{180}a^{9}-\frac{2}{5}a^{8}+\frac{83}{180}a^{7}-\frac{23}{180}a^{6}-\frac{8}{45}a^{5}+\frac{29}{90}a^{4}+\frac{23}{90}a^{3}+\frac{31}{90}a^{2}-\frac{37}{90}a-\frac{2}{45}$, $\frac{1}{69\cdots 60}a^{18}+\frac{5079369877093}{34\cdots 30}a^{17}+\frac{1248953290175}{13\cdots 72}a^{16}-\frac{16065740067407}{23\cdots 20}a^{15}-\frac{39521807986933}{69\cdots 60}a^{14}+\frac{69823220663306}{17\cdots 65}a^{13}-\frac{5833881731459}{69\cdots 60}a^{12}+\frac{202604489547439}{23\cdots 20}a^{11}-\frac{13\cdots 09}{69\cdots 60}a^{10}-\frac{169649607759241}{17\cdots 65}a^{9}+\frac{509444267825635}{13\cdots 72}a^{8}+\frac{28\cdots 37}{69\cdots 60}a^{7}+\frac{138095687281997}{34\cdots 30}a^{6}+\frac{109801049810827}{695672919946386}a^{5}+\frac{340830820751693}{34\cdots 30}a^{4}-\frac{487999879588151}{34\cdots 30}a^{3}+\frac{86035073769061}{386484955525770}a^{2}+\frac{228432525092221}{579727433288655}a-\frac{153854688531982}{347836459973193}$, $\frac{1}{91\cdots 60}a^{19}-\frac{17\cdots 03}{50\cdots 70}a^{18}-\frac{11\cdots 11}{10\cdots 40}a^{17}+\frac{54\cdots 55}{18\cdots 72}a^{16}+\frac{14\cdots 13}{45\cdots 30}a^{15}+\frac{12\cdots 69}{91\cdots 60}a^{14}-\frac{10\cdots 81}{20\cdots 08}a^{13}+\frac{23\cdots 09}{91\cdots 60}a^{12}+\frac{32\cdots 71}{45\cdots 30}a^{11}-\frac{21\cdots 13}{91\cdots 60}a^{10}-\frac{27\cdots 97}{91\cdots 60}a^{9}+\frac{32\cdots 33}{91\cdots 60}a^{8}-\frac{10\cdots 91}{30\cdots 20}a^{7}+\frac{29\cdots 49}{91\cdots 60}a^{6}-\frac{14\cdots 21}{91\cdots 86}a^{5}-\frac{66\cdots 87}{15\cdots 10}a^{4}+\frac{10\cdots 23}{22\cdots 15}a^{3}-\frac{18\cdots 87}{50\cdots 70}a^{2}+\frac{10\cdots 59}{45\cdots 30}a-\frac{85\cdots 77}{22\cdots 15}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot R \cdot h}{2\cdot\sqrt{526792882835395388103720314122737484676904390310681994000000000000000}}\cr\mathstrut & \text{
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 4.4.274625.2, 5.1.509074806578000.1, 10.2.16845215315007827284555460000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.0.4214343062683163104829762512981899877415235122485455952000000000000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{5}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{5}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/padicField/23.4.0.1}{4} }^{5}$ | ${\href{/padicField/29.2.0.1}{2} }^{10}$ | ${\href{/padicField/31.4.0.1}{4} }^{5}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{5}$ | ${\href{/padicField/43.4.0.1}{4} }^{5}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.5.8a1.1 | $x^{10} + 5 x^{9} + 15 x^{8} + 30 x^{7} + 45 x^{6} + 51 x^{5} + 45 x^{4} + 30 x^{3} + 15 x^{2} + 5 x + 3$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ |
| 2.2.5.8a1.1 | $x^{10} + 5 x^{9} + 15 x^{8} + 30 x^{7} + 45 x^{6} + 51 x^{5} + 45 x^{4} + 30 x^{3} + 15 x^{2} + 5 x + 3$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ | |
|
\(5\)
| 5.1.4.3a1.2 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 5.4.4.12a1.4 | $x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ | |
|
\(13\)
| 13.1.4.3a1.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 13.4.4.12a1.4 | $x^{16} + 12 x^{14} + 48 x^{13} + 62 x^{12} + 432 x^{11} + 1044 x^{10} + 1584 x^{9} + 5505 x^{8} + 9936 x^{7} + 11592 x^{6} + 23904 x^{5} + 31352 x^{4} + 15552 x^{3} + 3552 x^{2} + 384 x + 29$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ | |
|
\(197\)
| 197.2.5.8a1.1 | $x^{10} + 960 x^{9} + 368650 x^{8} + 70786560 x^{7} + 6796984360 x^{6} + 261202401792 x^{5} + 13593968720 x^{4} + 283146240 x^{3} + 2949200 x^{2} + 15360 x + 229$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ |
| 197.2.5.8a1.1 | $x^{10} + 960 x^{9} + 368650 x^{8} + 70786560 x^{7} + 6796984360 x^{6} + 261202401792 x^{5} + 13593968720 x^{4} + 283146240 x^{3} + 2949200 x^{2} + 15360 x + 229$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ |