Normalized defining polynomial
\( x^{20} - 2 x^{19} - 2 x^{18} + 8 x^{17} + 7 x^{16} - 32 x^{15} - x^{14} + 60 x^{13} + 3 x^{12} + \cdots - 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(29319238827689141862400\)
\(\medspace = 2^{20}\cdot 5^{2}\cdot 5783^{4}\)
|
| |
| Root discriminant: | \(13.28\) |
| |
| Galois root discriminant: | $2^{15/8}5^{1/2}5783^{1/2}\approx 623.724552629587$ | ||
| Ramified primes: |
\(2\), \(5\), \(5783\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{12}-\frac{1}{2}a^{11}-\frac{1}{4}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{2}a^{10}-\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{8}a^{16}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{8}a^{10}+\frac{3}{8}a^{8}-\frac{1}{2}a^{7}+\frac{1}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{8}a^{4}-\frac{1}{2}a^{2}+\frac{1}{4}a+\frac{3}{8}$, $\frac{1}{8}a^{17}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}+\frac{3}{8}a^{11}-\frac{1}{4}a^{10}-\frac{1}{8}a^{9}-\frac{1}{2}a^{8}-\frac{3}{8}a^{7}+\frac{1}{4}a^{6}+\frac{3}{8}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{176}a^{18}+\frac{1}{44}a^{17}+\frac{5}{176}a^{16}+\frac{7}{88}a^{15}+\frac{3}{88}a^{14}+\frac{15}{88}a^{13}-\frac{1}{16}a^{12}+\frac{3}{44}a^{11}+\frac{43}{88}a^{10}+\frac{9}{22}a^{9}+\frac{5}{22}a^{8}-\frac{9}{44}a^{7}-\frac{5}{44}a^{6}-\frac{3}{16}a^{4}-\frac{7}{88}a^{3}-\frac{25}{176}a^{2}-\frac{9}{88}a+\frac{31}{176}$, $\frac{1}{3344}a^{19}+\frac{5}{304}a^{17}-\frac{9}{418}a^{16}-\frac{135}{1672}a^{15}+\frac{113}{1672}a^{14}+\frac{793}{3344}a^{13}+\frac{3}{836}a^{12}+\frac{67}{209}a^{11}+\frac{733}{1672}a^{10}-\frac{465}{1672}a^{9}+\frac{29}{88}a^{8}+\frac{777}{1672}a^{7}-\frac{565}{1672}a^{6}-\frac{121}{304}a^{5}+\frac{72}{209}a^{4}-\frac{805}{3344}a^{3}+\frac{459}{1672}a^{2}+\frac{389}{3344}a+\frac{499}{1672}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{6027}{1672}a^{19}-\frac{703}{88}a^{18}-\frac{4659}{836}a^{17}+\frac{50613}{1672}a^{16}+\frac{3950}{209}a^{15}-\frac{100761}{836}a^{14}+\frac{36935}{1672}a^{13}+\frac{360535}{1672}a^{12}-\frac{61509}{1672}a^{11}-\frac{326319}{836}a^{10}+\frac{232165}{1672}a^{9}+\frac{4274}{11}a^{8}-\frac{178293}{1672}a^{7}-\frac{71321}{209}a^{6}+\frac{689}{76}a^{5}+\frac{333479}{1672}a^{4}+\frac{6777}{152}a^{3}-\frac{140367}{1672}a^{2}-\frac{12773}{209}a-\frac{19967}{1672}$, $\frac{1517}{836}a^{19}-\frac{361}{88}a^{18}-\frac{2179}{836}a^{17}+\frac{25645}{1672}a^{16}+\frac{3711}{418}a^{15}-\frac{51009}{836}a^{14}+\frac{11415}{836}a^{13}+\frac{180409}{1672}a^{12}-\frac{18587}{836}a^{11}-\frac{163941}{836}a^{10}+\frac{31795}{418}a^{9}+\frac{4259}{22}a^{8}-\frac{48229}{836}a^{7}-\frac{71873}{418}a^{6}+\frac{477}{76}a^{5}+\frac{170187}{1672}a^{4}+\frac{1667}{76}a^{3}-\frac{72977}{1672}a^{2}-\frac{26361}{836}a-\frac{12049}{1672}$, $\frac{714}{209}a^{19}-\frac{1457}{176}a^{18}-\frac{725}{209}a^{17}+\frac{97851}{3344}a^{16}+\frac{19161}{1672}a^{15}-\frac{193273}{1672}a^{14}+\frac{76491}{1672}a^{13}+\frac{639733}{3344}a^{12}-\frac{63203}{836}a^{11}-\frac{288687}{836}a^{10}+\frac{168517}{836}a^{9}+\frac{27585}{88}a^{8}-\frac{136349}{836}a^{7}-\frac{454265}{1672}a^{6}+\frac{4271}{76}a^{5}+\frac{557121}{3344}a^{4}+\frac{17643}{1672}a^{3}-\frac{247141}{3344}a^{2}-\frac{69907}{1672}a-\frac{21135}{3344}$, $\frac{13301}{1672}a^{19}-\frac{3545}{176}a^{18}-\frac{4523}{836}a^{17}+\frac{223695}{3344}a^{16}+\frac{34063}{1672}a^{15}-\frac{445571}{1672}a^{14}+\frac{110701}{836}a^{13}+\frac{1376137}{3344}a^{12}-\frac{326317}{1672}a^{11}-\frac{317931}{418}a^{10}+\frac{858345}{1672}a^{9}+\frac{55309}{88}a^{8}-\frac{614825}{1672}a^{7}-\frac{955291}{1672}a^{6}+\frac{2538}{19}a^{5}+\frac{1159157}{3344}a^{4}+\frac{21191}{836}a^{3}-\frac{523761}{3344}a^{2}-\frac{153017}{1672}a-\frac{47803}{3344}$, $\frac{64}{209}a^{19}-\frac{27}{44}a^{18}-\frac{128}{209}a^{17}+\frac{4195}{1672}a^{16}+\frac{466}{209}a^{15}-\frac{8549}{836}a^{14}-\frac{273}{836}a^{13}+\frac{16657}{836}a^{12}+\frac{189}{209}a^{11}-\frac{63083}{1672}a^{10}+\frac{2313}{418}a^{9}+\frac{3677}{88}a^{8}-\frac{1063}{418}a^{7}-\frac{67517}{1672}a^{6}-\frac{87}{19}a^{5}+\frac{39945}{1672}a^{4}+\frac{3379}{418}a^{3}-\frac{2048}{209}a^{2}-\frac{8849}{836}a-\frac{2993}{1672}$, $\frac{19967}{1672}a^{19}-\frac{2419}{88}a^{18}-\frac{26577}{1672}a^{17}+\frac{84527}{836}a^{16}+\frac{22289}{418}a^{15}-\frac{83818}{209}a^{14}+\frac{16505}{152}a^{13}+\frac{1161085}{1672}a^{12}-\frac{150317}{836}a^{11}-\frac{2094927}{1672}a^{10}+\frac{116522}{209}a^{9}+\frac{105481}{88}a^{8}-\frac{182379}{418}a^{7}-\frac{158049}{152}a^{6}+\frac{13751}{152}a^{5}+\frac{511563}{836}a^{4}+\frac{185663}{1672}a^{3}-\frac{433953}{1672}a^{2}-\frac{298907}{1672}a-\frac{654}{19}$, $\frac{3451}{304}a^{19}-\frac{5155}{176}a^{18}-\frac{19397}{3344}a^{17}+\frac{315453}{3344}a^{16}+\frac{5154}{209}a^{15}-\frac{315751}{836}a^{14}+\frac{693619}{3344}a^{13}+\frac{170745}{304}a^{12}-\frac{122437}{418}a^{11}-\frac{1762375}{1672}a^{10}+\frac{1285435}{1672}a^{9}+\frac{36285}{44}a^{8}-\frac{877551}{1672}a^{7}-\frac{649831}{836}a^{6}+\frac{63087}{304}a^{5}+\frac{142397}{304}a^{4}+\frac{85165}{3344}a^{3}-\frac{726129}{3344}a^{2}-\frac{409193}{3344}a-\frac{61323}{3344}$, $\frac{10819}{1672}a^{19}-\frac{1493}{88}a^{18}-\frac{4557}{1672}a^{17}+\frac{90757}{1672}a^{16}+\frac{2485}{209}a^{15}-\frac{181553}{836}a^{14}+\frac{19347}{152}a^{13}+\frac{535079}{1672}a^{12}-\frac{153203}{836}a^{11}-\frac{503089}{836}a^{10}+\frac{196025}{418}a^{9}+\frac{20397}{44}a^{8}-\frac{137321}{418}a^{7}-\frac{16751}{38}a^{6}+\frac{22003}{152}a^{5}+\frac{442435}{1672}a^{4}+\frac{7715}{1672}a^{3}-\frac{213189}{1672}a^{2}-\frac{113301}{1672}a-\frac{1435}{152}$, $\frac{28669}{3344}a^{19}-\frac{1945}{88}a^{18}-\frac{15063}{3344}a^{17}+\frac{14962}{209}a^{16}+\frac{30993}{1672}a^{15}-\frac{478285}{1672}a^{14}+\frac{524277}{3344}a^{13}+\frac{715623}{1672}a^{12}-\frac{376721}{1672}a^{11}-\frac{60801}{76}a^{10}+\frac{244791}{418}a^{9}+\frac{13899}{22}a^{8}-\frac{341371}{836}a^{7}-\frac{123544}{209}a^{6}+\frac{49281}{304}a^{5}+\frac{74906}{209}a^{4}+\frac{59199}{3344}a^{3}-\frac{141021}{836}a^{2}-\frac{314449}{3344}a-\frac{22867}{1672}$, $\frac{1809}{418}a^{19}-\frac{1565}{176}a^{18}-\frac{14909}{1672}a^{17}+\frac{123951}{3344}a^{16}+\frac{47265}{1672}a^{15}-\frac{243745}{1672}a^{14}+\frac{4841}{1672}a^{13}+\frac{945501}{3344}a^{12}-\frac{2999}{152}a^{11}-\frac{103582}{209}a^{10}+\frac{185323}{1672}a^{9}+\frac{4291}{8}a^{8}-\frac{178379}{1672}a^{7}-\frac{738427}{1672}a^{6}-\frac{4007}{152}a^{5}+\frac{875733}{3344}a^{4}+\frac{123559}{1672}a^{3}-\frac{337153}{3344}a^{2}-\frac{69031}{836}a-\frac{58295}{3344}$, $\frac{338}{209}a^{19}-\frac{257}{88}a^{18}-\frac{885}{209}a^{17}+\frac{5573}{418}a^{16}+\frac{11673}{836}a^{15}-\frac{11031}{209}a^{14}-\frac{5185}{418}a^{13}+\frac{183973}{1672}a^{12}+\frac{3369}{209}a^{11}-\frac{324255}{1672}a^{10}-\frac{270}{209}a^{9}+\frac{19887}{88}a^{8}+\frac{127}{418}a^{7}-\frac{318399}{1672}a^{6}-\frac{1749}{38}a^{5}+\frac{47879}{418}a^{4}+\frac{39309}{836}a^{3}-\frac{71271}{1672}a^{2}-\frac{8795}{209}a-\frac{8501}{836}$
|
| |
| Regulator: | \( 1357.71487099 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 1357.71487099 \cdot 1}{2\cdot\sqrt{29319238827689141862400}}\cr\approx \mathstrut & 0.154085283980 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.C_2^4:S_5$ (as 20T964):
| A non-solvable group of order 983040 |
| The 155 conjugacy class representatives for $C_2^9.C_2^4:S_5$ |
| Character table for $C_2^9.C_2^4:S_5$ |
Intermediate fields
| 5.3.5783.1, 10.6.34245723136.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.0.715801729191629440000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.5.0.1}{5} }^{4}$ | R | $16{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.10.0.1}{10} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.3.0.1}{3} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.5.2.10a5.1 | $x^{10} + 2 x^{8} + 2 x^{7} + 4 x^{5} + x^{4} + 2 x^{3} + 2 x^{2} + 3$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $$[2, 2, 2, 2]^{5}$$ |
| 2.5.2.10a5.1 | $x^{10} + 2 x^{8} + 2 x^{7} + 4 x^{5} + x^{4} + 2 x^{3} + 2 x^{2} + 3$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $$[2, 2, 2, 2]^{5}$$ | |
|
\(5\)
| 5.3.1.0a1.1 | $x^{3} + 3 x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 5.3.1.0a1.1 | $x^{3} + 3 x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.4.1.0a1.1 | $x^{4} + 4 x^{2} + 4 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 5.6.1.0a1.1 | $x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(5783\)
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $8$ | $2$ | $4$ | $4$ |