Properties

Label 20T964
Order \(983040\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $964$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,4,12,20,14,2,10,3,11,19,13)(5,17,16,8,6,18,15,7), (3,15,13,6,4,16,14,5)(7,19,18,10)(8,20,17,9)(11,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
120:  $S_5$
1920:  $(C_2^4:A_5) : C_2$ x 3
30720:  20T555
61440:  32T1520177

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$

Low degree siblings

20T964 x 3, 40T147546 x 2, 40T147716 x 2, 40T147838 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 155 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $983040=2^{16} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.