Normalized defining polynomial
\( x^{20} - 4 x^{18} - 4 x^{17} - x^{16} + 15 x^{15} + 33 x^{14} - 21 x^{13} - 80 x^{12} + 16 x^{11} + \cdots + 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(223904745130829775390625\)
\(\medspace = 5^{10}\cdot 13^{6}\cdot 41^{6}\)
|
| |
| Root discriminant: | \(14.71\) |
| |
| Galois root discriminant: | $5^{1/2}13^{1/2}41^{1/2}\approx 51.62363799656123$ | ||
| Ramified primes: |
\(5\), \(13\), \(41\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{293778824857}a^{19}-\frac{122731789841}{293778824857}a^{18}+\frac{29668497640}{293778824857}a^{17}-\frac{98870289971}{293778824857}a^{16}+\frac{2433481172}{41968403551}a^{15}-\frac{46223756263}{293778824857}a^{14}+\frac{119542485757}{293778824857}a^{13}+\frac{107084334337}{293778824857}a^{12}-\frac{145660048092}{293778824857}a^{11}-\frac{8696669444}{293778824857}a^{10}+\frac{127801650794}{293778824857}a^{9}+\frac{104836246363}{293778824857}a^{8}-\frac{45954012795}{293778824857}a^{7}+\frac{2941182564}{41968403551}a^{6}+\frac{112182798419}{293778824857}a^{5}+\frac{70817478413}{293778824857}a^{4}-\frac{74692251805}{293778824857}a^{3}-\frac{111589157014}{293778824857}a^{2}-\frac{128671736649}{293778824857}a+\frac{28596241987}{293778824857}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{127630150707}{293778824857}a^{19}+\frac{261868052185}{293778824857}a^{18}-\frac{318824545836}{293778824857}a^{17}-\frac{1512789020107}{293778824857}a^{16}-\frac{281857408787}{41968403551}a^{15}+\frac{621988581084}{293778824857}a^{14}+\frac{7865184182309}{293778824857}a^{13}+\frac{9215814292863}{293778824857}a^{12}-\frac{8187254461131}{293778824857}a^{11}-\frac{21610421096764}{293778824857}a^{10}-\frac{541339985336}{293778824857}a^{9}+\frac{23189942192087}{293778824857}a^{8}+\frac{7801352766122}{293778824857}a^{7}-\frac{1835212684251}{41968403551}a^{6}-\frac{4033753117446}{293778824857}a^{5}+\frac{5172318808414}{293778824857}a^{4}+\frac{53728532849}{293778824857}a^{3}-\frac{2357884077595}{293778824857}a^{2}-\frac{730459974534}{293778824857}a+\frac{89404902357}{293778824857}$, $\frac{50234512289}{293778824857}a^{19}+\frac{24543585988}{293778824857}a^{18}-\frac{154845699644}{293778824857}a^{17}-\frac{283711114282}{293778824857}a^{16}-\frac{43318390061}{41968403551}a^{15}+\frac{490610348840}{293778824857}a^{14}+\frac{1806545809606}{293778824857}a^{13}+\frac{283366890768}{293778824857}a^{12}-\frac{2875496381132}{293778824857}a^{11}-\frac{1219569148906}{293778824857}a^{10}+\frac{2907207935636}{293778824857}a^{9}+\frac{1173407006526}{293778824857}a^{8}-\frac{2261611253392}{293778824857}a^{7}-\frac{185809275}{41968403551}a^{6}+\frac{1387352499670}{293778824857}a^{5}-\frac{35483738211}{293778824857}a^{4}-\frac{378088540972}{293778824857}a^{3}+\frac{144870782276}{293778824857}a^{2}+\frac{103721862304}{293778824857}a-\frac{211721691880}{293778824857}$, $a$, $\frac{144161935495}{293778824857}a^{19}-\frac{87605732387}{293778824857}a^{18}-\frac{704018235768}{293778824857}a^{17}-\frac{276081793168}{293778824857}a^{16}+\frac{100333590855}{41968403551}a^{15}+\frac{2990420256331}{293778824857}a^{14}+\frac{3829431613638}{293778824857}a^{13}-\frac{7825875035653}{293778824857}a^{12}-\frac{14801264720553}{293778824857}a^{11}+\frac{10044261888097}{293778824857}a^{10}+\frac{25375275687009}{293778824857}a^{9}-\frac{8294438886565}{293778824857}a^{8}-\frac{26349940393937}{293778824857}a^{7}+\frac{1053735167159}{41968403551}a^{6}+\frac{15907272857969}{293778824857}a^{5}-\frac{6468163763210}{293778824857}a^{4}-\frac{5318572842231}{293778824857}a^{3}+\frac{2700129053535}{293778824857}a^{2}+\frac{1427324389046}{293778824857}a-\frac{627930060843}{293778824857}$, $\frac{351945174325}{293778824857}a^{19}+\frac{533497637664}{293778824857}a^{18}-\frac{1026836956921}{293778824857}a^{17}-\frac{3453839462592}{293778824857}a^{16}-\frac{576798715847}{41968403551}a^{15}+\frac{2759699222283}{293778824857}a^{14}+\frac{18999245103866}{293778824857}a^{13}+\frac{16366051102565}{293778824857}a^{12}-\frac{24929480354811}{293778824857}a^{11}-\frac{42386725269136}{293778824857}a^{10}+\frac{11498361387678}{293778824857}a^{9}+\frac{48102619409403}{293778824857}a^{8}+\frac{4466441394092}{293778824857}a^{7}-\frac{3916209563825}{41968403551}a^{6}-\frac{2843657353386}{293778824857}a^{5}+\frac{10843053070404}{293778824857}a^{4}-\frac{442278685669}{293778824857}a^{3}-\frac{4791938044464}{293778824857}a^{2}-\frac{1180179891894}{293778824857}a+\frac{335592097926}{293778824857}$, $\frac{13756737283}{293778824857}a^{19}-\frac{20280876181}{293778824857}a^{18}-\frac{43199940977}{293778824857}a^{17}-\frac{9641225128}{293778824857}a^{16}+\frac{7826398203}{41968403551}a^{15}+\frac{282799194435}{293778824857}a^{14}+\frac{196322667685}{293778824857}a^{13}-\frac{778231141889}{293778824857}a^{12}-\frac{818943161090}{293778824857}a^{11}+\frac{888766935684}{293778824857}a^{10}+\frac{1447773215397}{293778824857}a^{9}-\frac{713779787514}{293778824857}a^{8}-\frac{1419142695372}{293778824857}a^{7}+\frac{64303654188}{41968403551}a^{6}+\frac{1078824264033}{293778824857}a^{5}-\frac{76673117333}{293778824857}a^{4}-\frac{983469842522}{293778824857}a^{3}-\frac{1007146796}{293778824857}a^{2}+\frac{678670148154}{293778824857}a+\frac{19599067316}{293778824857}$, $\frac{208090067481}{293778824857}a^{19}+\frac{245986529902}{293778824857}a^{18}-\frac{749280358600}{293778824857}a^{17}-\frac{1918754668855}{293778824857}a^{16}-\frac{226395209464}{41968403551}a^{15}+\frac{2888848981160}{293778824857}a^{14}+\frac{11189653492413}{293778824857}a^{13}+\frac{5597240661483}{293778824857}a^{12}-\frac{20435496228481}{293778824857}a^{11}-\frac{22628642828003}{293778824857}a^{10}+\frac{18556261934215}{293778824857}a^{9}+\frac{32705785221883}{293778824857}a^{8}-\frac{8477008137685}{293778824857}a^{7}-\frac{3533775086457}{41968403551}a^{6}+\frac{3436680121978}{293778824857}a^{5}+\frac{11718515914370}{293778824857}a^{4}-\frac{2480209252793}{293778824857}a^{3}-\frac{4326203012402}{293778824857}a^{2}+\frac{925377537215}{293778824857}a+\frac{868356038378}{293778824857}$, $\frac{307527105583}{293778824857}a^{19}+\frac{83672514526}{293778824857}a^{18}-\frac{1273929065888}{293778824857}a^{17}-\frac{1703360352705}{293778824857}a^{16}-\frac{77415849261}{41968403551}a^{15}+\frac{5228083755291}{293778824857}a^{14}+\frac{12304061778018}{293778824857}a^{13}-\frac{3785111506521}{293778824857}a^{12}-\frac{29700688749419}{293778824857}a^{11}-\frac{6578297393099}{293778824857}a^{10}+\frac{37992183793860}{293778824857}a^{9}+\frac{15443742462893}{293778824857}a^{8}-\frac{31048196972713}{293778824857}a^{7}-\frac{1485941474054}{41968403551}a^{6}+\frac{16989560467609}{293778824857}a^{5}+\frac{2478136219980}{293778824857}a^{4}-\frac{6736582797127}{293778824857}a^{3}-\frac{1292621893691}{293778824857}a^{2}+\frac{2271687133914}{293778824857}a-\frac{222174627608}{293778824857}$, $\frac{420622221158}{293778824857}a^{19}+\frac{217351350471}{293778824857}a^{18}-\frac{1651935679350}{293778824857}a^{17}-\frac{2639483076225}{293778824857}a^{16}-\frac{204872563576}{41968403551}a^{15}+\frac{6277455951507}{293778824857}a^{14}+\frac{17623115577996}{293778824857}a^{13}-\frac{876308482127}{293778824857}a^{12}-\frac{38523496186778}{293778824857}a^{11}-\frac{14760178768201}{293778824857}a^{10}+\frac{46642650174674}{293778824857}a^{9}+\frac{24608992730320}{293778824857}a^{8}-\frac{37518682134922}{293778824857}a^{7}-\frac{2063814984101}{41968403551}a^{6}+\frac{22551556605691}{293778824857}a^{5}+\frac{2566085453201}{293778824857}a^{4}-\frac{9326155003232}{293778824857}a^{3}-\frac{274300261719}{293778824857}a^{2}+\frac{2173469102295}{293778824857}a-\frac{556425842103}{293778824857}$, $\frac{131160160619}{293778824857}a^{19}-\frac{57931060944}{293778824857}a^{18}-\frac{659876540872}{293778824857}a^{17}-\frac{341300941965}{293778824857}a^{16}+\frac{95072781931}{41968403551}a^{15}+\frac{2814901195524}{293778824857}a^{14}+\frac{3721197405649}{293778824857}a^{13}-\frac{6929079999060}{293778824857}a^{12}-\frac{14842201174327}{293778824857}a^{11}+\frac{8034100781422}{293778824857}a^{10}+\frac{26577608847176}{293778824857}a^{9}-\frac{4761332465082}{293778824857}a^{8}-\frac{28771044053574}{293778824857}a^{7}+\frac{454233110528}{41968403551}a^{6}+\frac{19150003241469}{293778824857}a^{5}-\frac{4027214040492}{293778824857}a^{4}-\frac{7890787529283}{293778824857}a^{3}+\frac{2800007567425}{293778824857}a^{2}+\frac{2501752415773}{293778824857}a-\frac{1102940949799}{293778824857}$, $\frac{383699805936}{293778824857}a^{19}+\frac{390698617823}{293778824857}a^{18}-\frac{1404088214905}{293778824857}a^{17}-\frac{3179068329593}{293778824857}a^{16}-\frac{368807614257}{41968403551}a^{15}+\frac{5065802310281}{293778824857}a^{14}+\frac{19168311793993}{293778824857}a^{13}+\frac{7713399231803}{293778824857}a^{12}-\frac{35257462699516}{293778824857}a^{11}-\frac{32108343564471}{293778824857}a^{10}+\frac{33658808232309}{293778824857}a^{9}+\frac{44063006825892}{293778824857}a^{8}-\frac{19235272438286}{293778824857}a^{7}-\frac{4168136179987}{41968403551}a^{6}+\frac{10183489802564}{293778824857}a^{5}+\frac{10638387320054}{293778824857}a^{4}-\frac{5354325618870}{293778824857}a^{3}-\frac{3730896143129}{293778824857}a^{2}+\frac{937280827085}{293778824857}a+\frac{310748660616}{293778824857}$
|
| |
| Regulator: | \( 4695.57166134 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 4695.57166134 \cdot 1}{2\cdot\sqrt{223904745130829775390625}}\cr\approx \mathstrut & 0.192834953745 \end{aligned}\]
Galois group
$C_2\times S_5$ (as 20T62):
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $C_2\times S_5$ |
| Character table for $C_2\times S_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.18927429625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 10.2.887778125.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }^{2}$ | ${\href{/padicField/3.10.0.1}{10} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.5.0.1}{5} }^{4}$ | R | ${\href{/padicField/17.10.0.1}{10} }^{2}$ | ${\href{/padicField/19.5.0.1}{5} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{10}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | R | ${\href{/padicField/43.6.0.1}{6} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{10}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.3.2.3a1.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 5.6.2.6a1.2 | $x^{12} + 2 x^{10} + 8 x^{9} + 3 x^{8} + 8 x^{7} + 22 x^{6} + 8 x^{5} + 5 x^{4} + 16 x^{3} + 4 x^{2} + 9$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.6.1.0a1.1 | $x^{6} + 10 x^{3} + 11 x^{2} + 11 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 13.6.2.6a1.2 | $x^{12} + 20 x^{9} + 22 x^{8} + 22 x^{7} + 104 x^{6} + 220 x^{5} + 341 x^{4} + 282 x^{3} + 165 x^{2} + 44 x + 17$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(41\)
| $\Q_{41}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{41}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{41}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{41}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 41.1.2.1a1.1 | $x^{2} + 41$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 41.1.2.1a1.1 | $x^{2} + 41$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |