Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $62$ | |
| Group : | $C_2\times S_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,20,14)(2,16,19,13)(3,12)(4,11)(5,8,9,17)(6,7,10,18), (1,7,4,2,8,3)(5,19,14,6,20,13)(9,10)(11,18,15,12,17,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 120: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 10: $S_5$
Low degree siblings
10T22 x 2, 12T123 x 2, 20T62, 20T65 x 2, 20T70, 24T570, 24T577, 30T58 x 2, 30T60 x 2, 40T173 x 2, 40T180, 40T181, 40T187 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 5,17)( 6,18)( 7,10)( 8, 9)(13,16)(14,15)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $20$ | $3$ | $( 3, 7,10)( 4, 8, 9)( 5,11,17)( 6,12,18)(13,16,19)(14,15,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3,13)( 4,14)( 7,19)( 8,20)( 9,15)(10,16)(11,17)(12,18)$ |
| $ 6, 6, 3, 3, 1, 1 $ | $20$ | $6$ | $( 3,13,10,19, 7,16)( 4,14, 9,20, 8,15)( 5,11,17)( 6,12,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3, 4)( 5,18)( 6,17)( 7, 9)( 8,10)(11,12)(13,15)(14,16)(19,20)$ |
| $ 6, 6, 6, 2 $ | $20$ | $6$ | $( 1, 2)( 3, 8,10, 4, 7, 9)( 5,12,17, 6,11,18)(13,15,19,14,16,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5, 6)( 7,20)( 8,19)( 9,16)(10,15)(11,18)(12,17)$ |
| $ 6, 6, 6, 2 $ | $20$ | $6$ | $( 1, 2)( 3,14,10,20, 7,15)( 4,13, 9,19, 8,16)( 5,12,17, 6,11,18)$ |
| $ 10, 10 $ | $24$ | $10$ | $( 1, 3, 5,12,15, 2, 4, 6,11,16)( 7,17,13, 9,19, 8,18,14,10,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $30$ | $4$ | $( 1, 3, 5,13)( 2, 4, 6,14)( 7,20)( 8,19)( 9,18,11,16)(10,17,12,15)$ |
| $ 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 5,11,15)( 2, 3, 6,12,16)( 7,18,13,10,19)( 8,17,14, 9,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $30$ | $4$ | $( 1, 4, 5,14)( 2, 3, 6,13)( 7,19)( 8,20)( 9,17,11,15)(10,18,12,16)$ |
Group invariants
| Order: | $240=2^{4} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [240, 189] |
| Character table: |
2 4 3 2 4 2 4 3 2 4 2 1 3 1 3
3 1 1 1 . 1 1 1 1 . 1 . . . .
5 1 . . . . 1 . . . . 1 . 1 .
1a 2a 3a 2b 6a 2c 2d 6b 2e 6c 10a 4a 5a 4b
2P 1a 1a 3a 1a 3a 1a 1a 3a 1a 3a 5a 2b 5a 2b
3P 1a 2a 1a 2b 2a 2c 2d 2c 2e 2d 10a 4a 5a 4b
5P 1a 2a 3a 2b 6a 2c 2d 6b 2e 6c 2c 4a 1a 4b
7P 1a 2a 3a 2b 6a 2c 2d 6b 2e 6c 10a 4a 5a 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 -1
X.3 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 -1
X.4 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1
X.5 4 -2 1 . 1 4 -2 1 . 1 -1 . -1 .
X.6 4 2 1 . -1 4 2 1 . -1 -1 . -1 .
X.7 4 -2 1 . 1 -4 2 -1 . -1 1 . -1 .
X.8 4 2 1 . -1 -4 -2 -1 . 1 1 . -1 .
X.9 5 1 -1 1 1 5 1 -1 1 1 . -1 . -1
X.10 5 -1 -1 1 -1 5 -1 -1 1 -1 . 1 . 1
X.11 5 1 -1 1 1 -5 -1 1 -1 -1 . 1 . -1
X.12 5 -1 -1 1 -1 -5 1 1 -1 1 . -1 . 1
X.13 6 . . -2 . 6 . . -2 . 1 . 1 .
X.14 6 . . -2 . -6 . . 2 . -1 . 1 .
|