Show commands: Magma
Group invariants
| Abstract group: | $C_2\times S_5$ |
| |
| Order: | $240=2^{4} \cdot 3 \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $20$ |
| |
| Transitive number $t$: | $62$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,15,20,14)(2,16,19,13)(3,12)(4,11)(5,8,9,17)(6,7,10,18)$, $(1,7,4,2,8,3)(5,19,14,6,20,13)(9,10)(11,18,15,12,17,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $120$: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 10: $S_5$
Low degree siblings
10T22 x 2, 12T123 x 2, 20T62, 20T65 x 2, 20T70, 24T570, 24T577, 30T58 x 2, 30T60 x 2, 40T173 x 2, 40T180, 40T181, 40T187 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| 2B | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3, 9)( 4,10)( 5,12)( 6,11)( 7, 8)(13,14)(15,19)(16,20)(17,18)$ |
| 2C | $2^{6},1^{8}$ | $10$ | $2$ | $6$ | $( 1, 8)( 2, 7)( 5,20)( 6,19)(11,15)(12,16)$ |
| 2D | $2^{10}$ | $15$ | $2$ | $10$ | $( 1,12)( 2,11)( 3,17)( 4,18)( 5,19)( 6,20)( 7,15)( 8,16)( 9,10)(13,14)$ |
| 2E | $2^{8},1^{4}$ | $15$ | $2$ | $8$ | $( 3,19)( 4,20)( 5,17)( 6,18)( 7,16)( 8,15)( 9,14)(10,13)$ |
| 3A | $3^{6},1^{2}$ | $20$ | $3$ | $12$ | $( 1, 8,14)( 2, 7,13)( 3, 6,19)( 4, 5,20)( 9,11,15)(10,12,16)$ |
| 4A | $4^{4},2^{2}$ | $30$ | $4$ | $14$ | $( 1,11)( 2,12)( 3,18,19, 6)( 4,17,20, 5)( 7,10,16,13)( 8, 9,15,14)$ |
| 4B | $4^{4},2^{2}$ | $30$ | $4$ | $14$ | $( 1, 7, 5,19)( 2, 8, 6,20)( 3,14)( 4,13)( 9,12,17,16)(10,11,18,15)$ |
| 5A | $5^{4}$ | $24$ | $5$ | $16$ | $( 1,11, 4,15, 5)( 2,12, 3,16, 6)( 7,10,18,19,13)( 8, 9,17,20,14)$ |
| 6A | $6^{3},2$ | $20$ | $6$ | $16$ | $( 1,13, 8, 2,14, 7)( 3,15, 6, 9,19,11)( 4,16, 5,10,20,12)(17,18)$ |
| 6B | $6^{3},2$ | $20$ | $6$ | $16$ | $( 1,13,15, 2,14,16)( 3, 5,18, 4, 6,17)( 7,11,10, 8,12, 9)(19,20)$ |
| 6C | $6^{2},3^{2},1^{2}$ | $20$ | $6$ | $14$ | $( 1,11,20, 8,15, 5)( 2,12,19, 7,16, 6)( 3,10,18)( 4, 9,17)$ |
| 10A | $10^{2}$ | $24$ | $10$ | $18$ | $( 1,16,11, 6, 4, 2,15,12, 5, 3)( 7,20,10,14,18, 8,19, 9,13,17)$ |
Malle's constant $a(G)$: $1/6$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 3A | 4A | 4B | 5A | 6A | 6B | 6C | 10A | ||
| Size | 1 | 1 | 10 | 10 | 15 | 15 | 20 | 30 | 30 | 24 | 20 | 20 | 20 | 24 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2E | 2E | 5A | 3A | 3A | 3A | 5A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 1A | 4A | 4B | 5A | 2B | 2A | 2C | 10A | |
| 5 P | 1A | 2A | 2B | 2C | 2D | 2E | 3A | 4A | 4B | 1A | 6A | 6B | 6C | 2A | |
| Type | |||||||||||||||
| 240.189.1a | R | ||||||||||||||
| 240.189.1b | R | ||||||||||||||
| 240.189.1c | R | ||||||||||||||
| 240.189.1d | R | ||||||||||||||
| 240.189.4a | R | ||||||||||||||
| 240.189.4b | R | ||||||||||||||
| 240.189.4c | R | ||||||||||||||
| 240.189.4d | R | ||||||||||||||
| 240.189.5a | R | ||||||||||||||
| 240.189.5b | R | ||||||||||||||
| 240.189.5c | R | ||||||||||||||
| 240.189.5d | R | ||||||||||||||
| 240.189.6a | R | ||||||||||||||
| 240.189.6b | R |
Regular extensions
Data not computed