Properties

Label 20.4.165...125.1
Degree $20$
Signature $[4, 8]$
Discriminant $1.651\times 10^{66}$
Root discriminant \(2045.90\)
Ramified primes $5,11,41$
Class number not computed
Class group not computed
Galois group $C_2\times F_5$ (as 20T9)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 - 5279406*x^15 - 172313849975839*x^10 - 2105583058003554756*x^5 + 2161732704559354333451)
 
Copy content gp:K = bnfinit(y^20 - 5279406*y^15 - 172313849975839*y^10 - 2105583058003554756*y^5 + 2161732704559354333451, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 5279406*x^15 - 172313849975839*x^10 - 2105583058003554756*x^5 + 2161732704559354333451);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 5279406*x^15 - 172313849975839*x^10 - 2105583058003554756*x^5 + 2161732704559354333451)
 

\( x^{20} - 5279406x^{15} - 172313849975839x^{10} - 2105583058003554756x^{5} + 2161732704559354333451 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1650745700457440430593235409009883454750158456154167652130126953125\) \(\medspace = 5^{31}\cdot 11^{18}\cdot 41^{16}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(2045.90\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $5^{31/20}11^{9/10}41^{4/5}\approx 2045.8981457874604$
Ramified primes:   \(5\), \(11\), \(41\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{451}a^{5}$, $\frac{1}{451}a^{6}$, $\frac{1}{451}a^{7}$, $\frac{1}{451}a^{8}$, $\frac{1}{4961}a^{9}-\frac{1}{11}a^{4}$, $\frac{1}{10170050}a^{10}-\frac{3}{22550}a^{5}+\frac{1}{50}$, $\frac{1}{10170050}a^{11}-\frac{3}{22550}a^{6}+\frac{1}{50}a$, $\frac{1}{416972050}a^{12}-\frac{103}{924550}a^{7}+\frac{901}{2050}a^{2}$, $\frac{1}{188054394550}a^{13}-\frac{410103}{416972050}a^{8}-\frac{34209}{84050}a^{3}$, $\frac{1}{7710230176550}a^{14}-\frac{44923}{1554168550}a^{9}-\frac{10462299}{37906550}a^{4}$, $\frac{1}{19\cdots 50}a^{15}-\frac{57\cdots 43}{44\cdots 50}a^{10}+\frac{83\cdots 21}{97\cdots 50}a^{5}+\frac{131539847067251}{314631098905895}$, $\frac{1}{19\cdots 50}a^{16}-\frac{57\cdots 43}{44\cdots 50}a^{11}+\frac{83\cdots 21}{97\cdots 50}a^{6}+\frac{131539847067251}{314631098905895}a$, $\frac{1}{89\cdots 50}a^{17}+\frac{32\cdots 63}{79\cdots 18}a^{12}-\frac{32\cdots 33}{44\cdots 50}a^{7}+\frac{13\cdots 19}{64\cdots 75}a^{2}$, $\frac{1}{18\cdots 50}a^{18}-\frac{1}{22\cdots 75}a^{17}-\frac{1}{49\cdots 25}a^{16}+\frac{1}{99\cdots 50}a^{15}-\frac{24\cdots 51}{20\cdots 25}a^{13}+\frac{31\cdots 99}{99\cdots 50}a^{12}+\frac{49\cdots 02}{11\cdots 75}a^{11}-\frac{24\cdots 51}{11\cdots 75}a^{10}+\frac{40\cdots 49}{45\cdots 75}a^{8}-\frac{38\cdots 31}{22\cdots 50}a^{7}+\frac{22\cdots 27}{24\cdots 25}a^{6}+\frac{15\cdots 74}{24\cdots 25}a^{5}+\frac{11\cdots 21}{26\cdots 50}a^{3}-\frac{20\cdots 97}{64\cdots 50}a^{2}+\frac{34\cdots 94}{78\cdots 75}a+\frac{43\cdots 81}{15\cdots 50}$, $\frac{1}{75\cdots 50}a^{19}-\frac{1}{44\cdots 50}a^{17}+\frac{1}{49\cdots 25}a^{16}+\frac{1}{49\cdots 25}a^{15}-\frac{24\cdots 51}{83\cdots 25}a^{14}-\frac{10\cdots 73}{99\cdots 50}a^{12}-\frac{49\cdots 02}{11\cdots 75}a^{11}-\frac{49\cdots 02}{11\cdots 75}a^{10}+\frac{78\cdots 19}{15\cdots 75}a^{9}+\frac{23\cdots 27}{22\cdots 50}a^{7}-\frac{22\cdots 27}{24\cdots 25}a^{6}-\frac{22\cdots 27}{24\cdots 25}a^{5}-\frac{29\cdots 69}{11\cdots 50}a^{4}-\frac{12\cdots 73}{32\cdots 75}a^{2}-\frac{34\cdots 94}{78\cdots 75}a-\frac{34\cdots 94}{78\cdots 75}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot R \cdot h}{2\cdot\sqrt{1650745700457440430593235409009883454750158456154167652130126953125}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 - 5279406*x^15 - 172313849975839*x^10 - 2105583058003554756*x^5 + 2161732704559354333451) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 5279406*x^15 - 172313849975839*x^10 - 2105583058003554756*x^5 + 2161732704559354333451, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 5279406*x^15 - 172313849975839*x^10 - 2105583058003554756*x^5 + 2161732704559354333451); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 5279406*x^15 - 172313849975839*x^10 - 2105583058003554756*x^5 + 2161732704559354333451); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times F_5$ (as 20T9):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 40
The 10 conjugacy class representatives for $C_2\times F_5$
Character table for $C_2\times F_5$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.15125.1, 5.1.3232184906328125.16, 10.2.52235096343476750903350830078125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 40
Degree 10 siblings: 10.0.114917211955648851987371826171875.1, deg 10
Degree 20 sibling: deg 20
Minimal sibling: 10.0.114917211955648851987371826171875.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{5}$ ${\href{/padicField/3.4.0.1}{4} }^{5}$ R ${\href{/padicField/7.4.0.1}{4} }^{5}$ R ${\href{/padicField/13.4.0.1}{4} }^{5}$ ${\href{/padicField/17.4.0.1}{4} }^{5}$ ${\href{/padicField/19.2.0.1}{2} }^{8}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{5}$ ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ ${\href{/padicField/31.5.0.1}{5} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{5}$ R ${\href{/padicField/43.4.0.1}{4} }^{5}$ ${\href{/padicField/47.4.0.1}{4} }^{5}$ ${\href{/padicField/53.4.0.1}{4} }^{5}$ ${\href{/padicField/59.2.0.1}{2} }^{10}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.1.20.31a1.1$x^{20} + 10 x^{12} + 5$$20$$1$$31$not computednot computed
\(11\) Copy content Toggle raw display 11.1.10.9a1.3$x^{10} + 33$$10$$1$$9$$C_{10}$$$[\ ]_{10}$$
11.1.10.9a1.3$x^{10} + 33$$10$$1$$9$$C_{10}$$$[\ ]_{10}$$
\(41\) Copy content Toggle raw display 41.2.5.8a1.1$x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$$5$$2$$8$$C_{10}$$$[\ ]_{5}^{2}$$
41.2.5.8a1.1$x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$$5$$2$$8$$C_{10}$$$[\ ]_{5}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)