Normalized defining polynomial
\( x^{20} - 6 x^{19} + 15 x^{18} - 18 x^{17} + x^{16} + 46 x^{15} - 138 x^{14} + 300 x^{13} - 521 x^{12} + \cdots + 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(164475020247040000000000\)
\(\medspace = 2^{28}\cdot 5^{10}\cdot 89^{4}\)
|
| |
| Root discriminant: | \(14.48\) |
| |
| Galois root discriminant: | $2^{115/48}5^{1/2}89^{2/3}\approx 234.5827309266611$ | ||
| Ramified primes: |
\(2\), \(5\), \(89\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2888902}a^{19}-\frac{419709}{2888902}a^{18}-\frac{280955}{1444451}a^{17}-\frac{101029}{1444451}a^{16}+\frac{630565}{2888902}a^{15}-\frac{598831}{2888902}a^{14}-\frac{418043}{2888902}a^{13}-\frac{672539}{2888902}a^{12}-\frac{756769}{2888902}a^{11}+\frac{778835}{2888902}a^{10}+\frac{1318983}{2888902}a^{9}-\frac{22415}{61466}a^{8}+\frac{601017}{1444451}a^{7}+\frac{173503}{1444451}a^{6}+\frac{202009}{2888902}a^{5}-\frac{287703}{2888902}a^{4}-\frac{256694}{1444451}a^{3}-\frac{580459}{1444451}a^{2}+\frac{264}{1444451}a+\frac{421130}{1444451}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{64117}{6862}a^{19}-\frac{339237}{6862}a^{18}+\frac{360542}{3431}a^{17}-\frac{641313}{6862}a^{16}-\frac{197459}{3431}a^{15}+\frac{2672619}{6862}a^{14}-\frac{6949175}{6862}a^{13}+\frac{14295893}{6862}a^{12}-\frac{11619157}{3431}a^{11}+\frac{29361211}{6862}a^{10}-\frac{13995232}{3431}a^{9}+\frac{195375}{73}a^{8}-\frac{4367441}{6862}a^{7}-\frac{3441999}{3431}a^{6}+\frac{5574049}{3431}a^{5}-\frac{9488551}{6862}a^{4}+\frac{2991307}{3431}a^{3}-\frac{1387098}{3431}a^{2}+\frac{768643}{6862}a-\frac{100259}{6862}$, $\frac{138652157}{2888902}a^{19}-\frac{755613271}{2888902}a^{18}+\frac{831473326}{1444451}a^{17}-\frac{787421373}{1444451}a^{16}-\frac{740750239}{2888902}a^{15}+\frac{2990899812}{1444451}a^{14}-\frac{15834903167}{2888902}a^{13}+\frac{16417446477}{1444451}a^{12}-\frac{54049126959}{2888902}a^{11}+\frac{69286251565}{2888902}a^{10}-\frac{67262298279}{2888902}a^{9}+\frac{482947178}{30733}a^{8}-\frac{6199783206}{1444451}a^{7}-\frac{7579684396}{1444451}a^{6}+\frac{26371030423}{2888902}a^{5}-\frac{11532238808}{1444451}a^{4}+\frac{7352772866}{1444451}a^{3}-\frac{7005085065}{2888902}a^{2}+\frac{1007119004}{1444451}a-\frac{118125338}{1444451}$, $a$, $\frac{35202359}{2888902}a^{19}-\frac{90642241}{1444451}a^{18}+\frac{368339985}{2888902}a^{17}-\frac{145653959}{1444451}a^{16}-\frac{136453274}{1444451}a^{15}+\frac{718195639}{1444451}a^{14}-\frac{1796773576}{1444451}a^{13}+\frac{3636358233}{1444451}a^{12}-\frac{11573832953}{2888902}a^{11}+\frac{7089842118}{1444451}a^{10}-\frac{12908592349}{2888902}a^{9}+\frac{82403262}{30733}a^{8}-\frac{447712594}{1444451}a^{7}-\frac{2044168537}{1444451}a^{6}+\frac{2740489632}{1444451}a^{5}-\frac{2121784163}{1444451}a^{4}+\frac{2497016539}{2888902}a^{3}-\frac{527368823}{1444451}a^{2}+\frac{209095479}{2888902}a-\frac{2391237}{1444451}$, $a^{19}-5a^{18}+10a^{17}-8a^{16}-7a^{15}+39a^{14}-99a^{13}+201a^{12}-320a^{11}+396a^{10}-367a^{9}+231a^{8}-42a^{7}-100a^{6}+150a^{5}-122a^{4}+77a^{3}-33a^{2}+10a-1$, $\frac{19288349}{2888902}a^{19}-\frac{91152157}{2888902}a^{18}+\frac{160892087}{2888902}a^{17}-\frac{40211767}{1444451}a^{16}-\frac{101761950}{1444451}a^{15}+\frac{712215411}{2888902}a^{14}-\frac{822846698}{1444451}a^{13}+\frac{3203495397}{2888902}a^{12}-\frac{4781248143}{2888902}a^{11}+\frac{5342250309}{2888902}a^{10}-\frac{4198830263}{2888902}a^{9}+\frac{37368931}{61466}a^{8}+\frac{428262652}{1444451}a^{7}-\frac{1097776720}{1444451}a^{6}+\frac{1027264952}{1444451}a^{5}-\frac{1225803779}{2888902}a^{4}+\frac{583027723}{2888902}a^{3}-\frac{67959680}{1444451}a^{2}-\frac{55464867}{2888902}a+\frac{9104654}{1444451}$, $\frac{89118477}{1444451}a^{19}-\frac{979442935}{2888902}a^{18}+\frac{2177615683}{2888902}a^{17}-\frac{2102012541}{2888902}a^{16}-\frac{447812404}{1444451}a^{15}+\frac{3877853100}{1444451}a^{14}-\frac{10335223964}{1444451}a^{13}+\frac{42981973249}{2888902}a^{12}-\frac{35515022227}{1444451}a^{11}+\frac{45748679585}{1444451}a^{10}-\frac{89396056881}{2888902}a^{9}+\frac{1297090467}{61466}a^{8}-\frac{8722275215}{1444451}a^{7}-\frac{19396661001}{2888902}a^{6}+\frac{17392572659}{1444451}a^{5}-\frac{15387116335}{1444451}a^{4}+\frac{9871796873}{1444451}a^{3}-\frac{4750004219}{1444451}a^{2}+\frac{2789475041}{2888902}a-\frac{170000120}{1444451}$, $\frac{79056402}{1444451}a^{19}-\frac{443618237}{1444451}a^{18}+\frac{1012210487}{1444451}a^{17}-\frac{2046743783}{2888902}a^{16}-\frac{661899789}{2888902}a^{15}+\frac{3516606156}{1444451}a^{14}-\frac{9532069279}{1444451}a^{13}+\frac{39926473943}{2888902}a^{12}-\frac{66619492737}{2888902}a^{11}+\frac{86834883303}{2888902}a^{10}-\frac{86138426951}{2888902}a^{9}+\frac{1280324057}{61466}a^{8}-\frac{18989405163}{2888902}a^{7}-\frac{16989752133}{2888902}a^{6}+\frac{32926725029}{2888902}a^{5}-\frac{14959644509}{1444451}a^{4}+\frac{9743578613}{1444451}a^{3}-\frac{9563957189}{2888902}a^{2}+\frac{2936639399}{2888902}a-\frac{193493636}{1444451}$, $\frac{71617093}{1444451}a^{19}-\frac{794472825}{2888902}a^{18}+\frac{894914009}{1444451}a^{17}-\frac{887239853}{1444451}a^{16}-\frac{645746191}{2888902}a^{15}+\frac{3142233986}{1444451}a^{14}-\frac{16929919623}{2888902}a^{13}+\frac{35355466169}{2888902}a^{12}-\frac{29373235460}{1444451}a^{11}+\frac{38113321598}{1444451}a^{10}-\frac{75210406449}{2888902}a^{9}+\frac{554663835}{30733}a^{8}-\frac{7994077277}{1444451}a^{7}-\frac{15246918987}{2888902}a^{6}+\frac{28866714957}{2888902}a^{5}-\frac{13020609937}{1444451}a^{4}+\frac{16918972011}{2888902}a^{3}-\frac{4129501444}{1444451}a^{2}+\frac{1259103647}{1444451}a-\frac{331465035}{2888902}$, $\frac{78430296}{1444451}a^{19}-\frac{448821062}{1444451}a^{18}+\frac{2098895069}{2888902}a^{17}-\frac{2216440571}{2888902}a^{16}-\frac{506486417}{2888902}a^{15}+\frac{3555475702}{1444451}a^{14}-\frac{19633944693}{2888902}a^{13}+\frac{20707976880}{1444451}a^{12}-\frac{34876125690}{1444451}a^{11}+\frac{45996899943}{1444451}a^{10}-\frac{46321594929}{1444451}a^{9}+\frac{1409838931}{61466}a^{8}-\frac{11397606299}{1444451}a^{7}-\frac{8187705053}{1444451}a^{6}+\frac{34735120697}{2888902}a^{5}-\frac{16235671081}{1444451}a^{4}+\frac{21496751861}{2888902}a^{3}-\frac{5379388132}{1444451}a^{2}+\frac{3454143479}{2888902}a-\frac{485724645}{2888902}$, $\frac{135951149}{2888902}a^{19}-\frac{369640180}{1444451}a^{18}+\frac{1625130329}{2888902}a^{17}-\frac{1541156141}{2888902}a^{16}-\frac{715018835}{2888902}a^{15}+\frac{2920223304}{1444451}a^{14}-\frac{7745547171}{1444451}a^{13}+\frac{32137531539}{2888902}a^{12}-\frac{26456471034}{1444451}a^{11}+\frac{67894893481}{2888902}a^{10}-\frac{33017157275}{1444451}a^{9}+\frac{951978617}{61466}a^{8}-\frac{12461059769}{2888902}a^{7}-\frac{14611205737}{2888902}a^{6}+\frac{25772023377}{2888902}a^{5}-\frac{11337504552}{1444451}a^{4}+\frac{14525791167}{2888902}a^{3}-\frac{6944510403}{2888902}a^{2}+\frac{1013389490}{1444451}a-\frac{126017604}{1444451}$
|
| |
| Regulator: | \( 5058.99177989 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 5058.99177989 \cdot 1}{2\cdot\sqrt{164475020247040000000000}}\cr\approx \mathstrut & 0.242405758937 \end{aligned}\] (assuming GRH)
Galois group
$C_2^8.\POPlus(4,5)$ (as 20T1013):
| A non-solvable group of order 3686400 |
| The 114 conjugacy class representatives for $C_2^8.\POPlus(4,5)$ |
| Character table for $C_2^8.\POPlus(4,5)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.25347200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.4.168422420732968960000000000.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.10.0.1}{10} }^{2}$ | R | ${\href{/padicField/7.10.0.1}{10} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.10.0.1}{10} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.5.0.1}{5} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.16b5.3 | $x^{8} + 8 x^{7} + 24 x^{6} + 48 x^{5} + 63 x^{4} + 64 x^{3} + 46 x^{2} + 24 x + 9$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $$[2, 2, 3]^{2}$$ |
| 2.2.6.12a1.3 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 23 x^{2} + 8 x + 5$ | $6$ | $2$ | $12$ | $S_4$ | $$[\frac{4}{3}, \frac{4}{3}]_{3}^{2}$$ | |
|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 5.6.2.6a1.2 | $x^{12} + 2 x^{10} + 8 x^{9} + 3 x^{8} + 8 x^{7} + 22 x^{6} + 8 x^{5} + 5 x^{4} + 16 x^{3} + 4 x^{2} + 9$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(89\)
| 89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 89.3.1.0a1.1 | $x^{3} + 3 x + 86$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 89.3.1.0a1.1 | $x^{3} + 3 x + 86$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 89.4.1.0a1.1 | $x^{4} + 4 x^{2} + 72 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 89.2.3.4a1.2 | $x^{6} + 246 x^{5} + 20181 x^{4} + 552844 x^{3} + 60543 x^{2} + 2214 x + 116$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |