Defining polynomial
|
$( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + \left(4 x + 4\right) ( x^{2} + x + 1 ) + 2$
|
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$: | $8$ |
| Ramification index $e$: | $4$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $16$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$: | $C_2^2$ |
| This field is not Galois over $\Q_{2}.$ | |
| Visible Artin slopes: | $[2, 3]$ |
| Visible Swan slopes: | $[1,2]$ |
| Means: | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
| Rams: | $(1, 3)$ |
| Jump set: | $[1, 3, 7]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Intermediate fields
| $\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{2\cdot 5})$, 2.2.2.4a2.1, 2.2.2.6a1.5, 2.2.2.6a1.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{4} + \left(2 t + 2\right) x^{2} + 4 t x + 6 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^2 + t$,$t z + (t + 1)$ |
| Associated inertia: | $1$,$1$ |
| Indices of inseparability: | $[5, 2, 0]$ |
Invariants of the Galois closure
| Galois degree: | $16$ |
| Galois group: | $C_2\times D_4$ (as 8T9) |
| Inertia group: | Intransitive group isomorphic to $C_2^3$ |
| Wild inertia group: | $C_2^3$ |
| Galois unramified degree: | $2$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[2, 2, 3]$ |
| Galois Swan slopes: | $[1,1,2]$ |
| Galois mean slope: | $2.25$ |
| Galois splitting model: | $x^{8} - 2 x^{6} + 3 x^{4} + 4 x^{2} + 1$ |