Normalized defining polynomial
\( x^{20} - x^{19} - 724 x^{18} + 1933 x^{17} + 207069 x^{16} - 879414 x^{15} - 29244939 x^{14} + \cdots + 874798166506991 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[20, 0]$ |
| |
| Discriminant: |
\(10818327022517881605935827576487172209050638458251953125\)
\(\medspace = 5^{15}\cdot 11^{18}\cdot 41^{16}\)
|
| |
| Root discriminant: | \(564.56\) |
| |
| Galois root discriminant: | $5^{3/4}11^{9/10}41^{4/5}\approx 564.557271214292$ | ||
| Ramified primes: |
\(5\), \(11\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{20}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2255=5\cdot 11\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2255}(1,·)$, $\chi_{2255}(57,·)$, $\chi_{2255}(182,·)$, $\chi_{2255}(201,·)$, $\chi_{2255}(283,·)$, $\chi_{2255}(346,·)$, $\chi_{2255}(502,·)$, $\chi_{2255}(508,·)$, $\chi_{2255}(633,·)$, $\chi_{2255}(953,·)$, $\chi_{2255}(994,·)$, $\chi_{2255}(1164,·)$, $\chi_{2255}(1354,·)$, $\chi_{2255}(1554,·)$, $\chi_{2255}(1682,·)$, $\chi_{2255}(1699,·)$, $\chi_{2255}(1896,·)$, $\chi_{2255}(2066,·)$, $\chi_{2255}(2087,·)$, $\chi_{2255}(2133,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{29321}a^{18}-\frac{5588}{29321}a^{17}+\frac{13627}{29321}a^{16}-\frac{3586}{29321}a^{15}+\frac{1233}{29321}a^{14}+\frac{11616}{29321}a^{13}-\frac{5226}{29321}a^{12}-\frac{7133}{29321}a^{11}-\frac{12058}{29321}a^{10}-\frac{6536}{29321}a^{9}+\frac{1988}{29321}a^{8}-\frac{247}{29321}a^{7}-\frac{5167}{29321}a^{6}-\frac{1924}{29321}a^{5}+\frac{7665}{29321}a^{4}-\frac{13380}{29321}a^{3}-\frac{1940}{29321}a^{2}-\frac{7454}{29321}a+\frac{13887}{29321}$, $\frac{1}{61\cdots 01}a^{19}+\frac{70\cdots 64}{61\cdots 01}a^{18}-\frac{20\cdots 82}{61\cdots 01}a^{17}-\frac{22\cdots 16}{61\cdots 01}a^{16}+\frac{19\cdots 27}{61\cdots 01}a^{15}+\frac{68\cdots 95}{61\cdots 01}a^{14}+\frac{18\cdots 00}{61\cdots 01}a^{13}+\frac{29\cdots 57}{61\cdots 01}a^{12}+\frac{68\cdots 02}{61\cdots 01}a^{11}-\frac{11\cdots 21}{61\cdots 01}a^{10}-\frac{40\cdots 06}{61\cdots 01}a^{9}+\frac{17\cdots 44}{61\cdots 01}a^{8}+\frac{25\cdots 50}{61\cdots 01}a^{7}+\frac{17\cdots 73}{61\cdots 01}a^{6}-\frac{12\cdots 03}{61\cdots 01}a^{5}+\frac{16\cdots 26}{61\cdots 01}a^{4}-\frac{14\cdots 70}{61\cdots 01}a^{3}-\frac{24\cdots 46}{61\cdots 01}a^{2}+\frac{46\cdots 52}{61\cdots 01}a-\frac{25\cdots 63}{61\cdots 01}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{5}\times C_{55}$, which has order $275$ (assuming GRH) |
| |
| Narrow class group: | $C_{110}\times C_{10}$, which has order $1100$ (assuming GRH) |
|
Unit group
| Rank: | $19$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{24\cdots 52}{50\cdots 99}a^{19}+\frac{15\cdots 19}{50\cdots 99}a^{18}-\frac{17\cdots 95}{50\cdots 99}a^{17}-\frac{83\cdots 65}{50\cdots 99}a^{16}+\frac{50\cdots 28}{50\cdots 99}a^{15}+\frac{15\cdots 04}{50\cdots 99}a^{14}-\frac{76\cdots 59}{50\cdots 99}a^{13}-\frac{12\cdots 53}{50\cdots 99}a^{12}+\frac{64\cdots 48}{50\cdots 99}a^{11}+\frac{27\cdots 78}{50\cdots 99}a^{10}-\frac{30\cdots 04}{50\cdots 99}a^{9}+\frac{64\cdots 54}{50\cdots 99}a^{8}+\frac{79\cdots 56}{50\cdots 99}a^{7}-\frac{34\cdots 58}{50\cdots 99}a^{6}-\frac{11\cdots 31}{50\cdots 99}a^{5}+\frac{34\cdots 95}{50\cdots 99}a^{4}+\frac{81\cdots 50}{50\cdots 99}a^{3}+\frac{13\cdots 77}{50\cdots 99}a^{2}-\frac{23\cdots 84}{50\cdots 99}a-\frac{18\cdots 55}{50\cdots 99}$, $\frac{13\cdots 30}{14\cdots 61}a^{19}+\frac{60\cdots 08}{14\cdots 61}a^{18}-\frac{97\cdots 52}{14\cdots 61}a^{17}-\frac{26\cdots 41}{14\cdots 61}a^{16}+\frac{27\cdots 78}{14\cdots 61}a^{15}+\frac{29\cdots 87}{14\cdots 61}a^{14}-\frac{40\cdots 98}{14\cdots 61}a^{13}+\frac{57\cdots 30}{54\cdots 69}a^{12}+\frac{32\cdots 78}{14\cdots 61}a^{11}-\frac{46\cdots 73}{14\cdots 61}a^{10}-\frac{13\cdots 24}{14\cdots 61}a^{9}+\frac{26\cdots 11}{14\cdots 61}a^{8}+\frac{31\cdots 10}{14\cdots 61}a^{7}-\frac{59\cdots 26}{14\cdots 61}a^{6}-\frac{38\cdots 40}{14\cdots 61}a^{5}+\frac{53\cdots 68}{14\cdots 61}a^{4}+\frac{24\cdots 23}{14\cdots 61}a^{3}-\frac{10\cdots 81}{14\cdots 61}a^{2}-\frac{65\cdots 49}{14\cdots 61}a-\frac{38\cdots 90}{14\cdots 61}$, $\frac{32\cdots 09}{14\cdots 61}a^{19}+\frac{51\cdots 13}{14\cdots 61}a^{18}-\frac{23\cdots 89}{14\cdots 61}a^{17}+\frac{28\cdots 99}{14\cdots 61}a^{16}+\frac{67\cdots 15}{14\cdots 61}a^{15}-\frac{11\cdots 75}{14\cdots 61}a^{14}-\frac{96\cdots 44}{14\cdots 61}a^{13}+\frac{29\cdots 78}{14\cdots 61}a^{12}+\frac{72\cdots 43}{14\cdots 61}a^{11}-\frac{29\cdots 01}{14\cdots 61}a^{10}-\frac{26\cdots 69}{14\cdots 61}a^{9}+\frac{12\cdots 96}{14\cdots 61}a^{8}+\frac{48\cdots 64}{14\cdots 61}a^{7}-\frac{24\cdots 57}{14\cdots 61}a^{6}-\frac{43\cdots 19}{14\cdots 61}a^{5}+\frac{19\cdots 16}{14\cdots 61}a^{4}+\frac{24\cdots 51}{14\cdots 61}a^{3}-\frac{57\cdots 60}{14\cdots 61}a^{2}-\frac{76\cdots 33}{14\cdots 61}a-\frac{16\cdots 10}{14\cdots 61}$, $\frac{17\cdots 35}{32\cdots 99}a^{19}+\frac{12\cdots 50}{32\cdots 99}a^{18}-\frac{12\cdots 85}{32\cdots 99}a^{17}-\frac{65\cdots 70}{32\cdots 99}a^{16}+\frac{34\cdots 70}{32\cdots 99}a^{15}+\frac{12\cdots 30}{32\cdots 99}a^{14}-\frac{51\cdots 70}{32\cdots 99}a^{13}-\frac{11\cdots 90}{32\cdots 99}a^{12}+\frac{42\cdots 25}{32\cdots 99}a^{11}+\frac{44\cdots 80}{32\cdots 99}a^{10}-\frac{19\cdots 95}{32\cdots 99}a^{9}-\frac{62\cdots 60}{32\cdots 99}a^{8}+\frac{50\cdots 90}{32\cdots 99}a^{7}+\frac{30\cdots 40}{32\cdots 99}a^{6}-\frac{70\cdots 31}{32\cdots 99}a^{5}-\frac{77\cdots 15}{32\cdots 99}a^{4}+\frac{48\cdots 85}{32\cdots 99}a^{3}+\frac{16\cdots 80}{32\cdots 99}a^{2}-\frac{13\cdots 95}{32\cdots 99}a-\frac{11\cdots 57}{32\cdots 99}$, $\frac{24\cdots 15}{32\cdots 99}a^{19}+\frac{66\cdots 35}{32\cdots 99}a^{18}-\frac{17\cdots 65}{32\cdots 99}a^{17}-\frac{18\cdots 55}{32\cdots 99}a^{16}+\frac{49\cdots 95}{32\cdots 99}a^{15}-\frac{25\cdots 80}{32\cdots 99}a^{14}-\frac{71\cdots 80}{32\cdots 99}a^{13}+\frac{13\cdots 65}{32\cdots 99}a^{12}+\frac{55\cdots 10}{32\cdots 99}a^{11}-\frac{15\cdots 24}{32\cdots 99}a^{10}-\frac{22\cdots 05}{32\cdots 99}a^{9}+\frac{72\cdots 30}{32\cdots 99}a^{8}+\frac{46\cdots 85}{32\cdots 99}a^{7}-\frac{14\cdots 35}{32\cdots 99}a^{6}-\frac{52\cdots 53}{32\cdots 99}a^{5}+\frac{12\cdots 90}{32\cdots 99}a^{4}+\frac{36\cdots 75}{32\cdots 99}a^{3}-\frac{28\cdots 30}{32\cdots 99}a^{2}-\frac{11\cdots 05}{32\cdots 99}a-\frac{69\cdots 55}{32\cdots 99}$, $\frac{37\cdots 51}{32\cdots 99}a^{19}-\frac{39\cdots 41}{32\cdots 99}a^{18}-\frac{29\cdots 33}{32\cdots 99}a^{17}+\frac{31\cdots 21}{32\cdots 99}a^{16}+\frac{87\cdots 24}{32\cdots 99}a^{15}-\frac{10\cdots 56}{32\cdots 99}a^{14}-\frac{12\cdots 79}{32\cdots 99}a^{13}+\frac{15\cdots 78}{32\cdots 99}a^{12}+\frac{85\cdots 73}{32\cdots 99}a^{11}-\frac{12\cdots 60}{32\cdots 99}a^{10}-\frac{22\cdots 82}{32\cdots 99}a^{9}+\frac{52\cdots 88}{32\cdots 99}a^{8}+\frac{66\cdots 79}{32\cdots 99}a^{7}-\frac{10\cdots 85}{32\cdots 99}a^{6}+\frac{41\cdots 27}{32\cdots 99}a^{5}+\frac{96\cdots 39}{32\cdots 99}a^{4}-\frac{20\cdots 42}{32\cdots 99}a^{3}-\frac{37\cdots 92}{32\cdots 99}a^{2}-\frac{10\cdots 79}{32\cdots 99}a+\frac{24\cdots 01}{32\cdots 99}$, $\frac{10\cdots 90}{22\cdots 29}a^{19}+\frac{35\cdots 98}{22\cdots 29}a^{18}-\frac{74\cdots 17}{22\cdots 29}a^{17}-\frac{11\cdots 16}{22\cdots 29}a^{16}+\frac{20\cdots 61}{22\cdots 29}a^{15}-\frac{42\cdots 42}{22\cdots 29}a^{14}-\frac{28\cdots 48}{22\cdots 29}a^{13}+\frac{49\cdots 13}{22\cdots 29}a^{12}+\frac{19\cdots 86}{22\cdots 29}a^{11}-\frac{58\cdots 72}{22\cdots 29}a^{10}-\frac{59\cdots 75}{22\cdots 29}a^{9}+\frac{23\cdots 74}{22\cdots 29}a^{8}+\frac{59\cdots 44}{22\cdots 29}a^{7}-\frac{32\cdots 29}{22\cdots 29}a^{6}+\frac{33\cdots 28}{22\cdots 29}a^{5}+\frac{77\cdots 06}{22\cdots 29}a^{4}-\frac{65\cdots 28}{22\cdots 29}a^{3}+\frac{27\cdots 08}{22\cdots 29}a^{2}+\frac{22\cdots 17}{22\cdots 29}a+\frac{11\cdots 53}{22\cdots 29}$, $\frac{14\cdots 05}{22\cdots 29}a^{19}+\frac{56\cdots 71}{22\cdots 29}a^{18}-\frac{10\cdots 04}{22\cdots 29}a^{17}-\frac{22\cdots 51}{22\cdots 29}a^{16}+\frac{29\cdots 69}{22\cdots 29}a^{15}+\frac{17\cdots 14}{22\cdots 29}a^{14}-\frac{42\cdots 91}{22\cdots 29}a^{13}+\frac{33\cdots 05}{22\cdots 29}a^{12}+\frac{33\cdots 09}{22\cdots 29}a^{11}-\frac{59\cdots 56}{22\cdots 29}a^{10}-\frac{13\cdots 61}{22\cdots 29}a^{9}+\frac{29\cdots 30}{22\cdots 29}a^{8}+\frac{30\cdots 87}{22\cdots 29}a^{7}-\frac{60\cdots 44}{22\cdots 29}a^{6}-\frac{35\cdots 69}{22\cdots 29}a^{5}+\frac{46\cdots 13}{22\cdots 29}a^{4}+\frac{23\cdots 02}{22\cdots 29}a^{3}-\frac{63\cdots 44}{22\cdots 29}a^{2}-\frac{70\cdots 36}{22\cdots 29}a-\frac{50\cdots 42}{22\cdots 29}$, $\frac{34\cdots 99}{22\cdots 29}a^{19}+\frac{43\cdots 48}{22\cdots 29}a^{18}-\frac{23\cdots 60}{22\cdots 29}a^{17}-\frac{27\cdots 50}{22\cdots 29}a^{16}+\frac{70\cdots 42}{22\cdots 29}a^{15}+\frac{65\cdots 28}{22\cdots 29}a^{14}-\frac{11\cdots 03}{22\cdots 29}a^{13}-\frac{78\cdots 06}{22\cdots 29}a^{12}+\frac{10\cdots 66}{22\cdots 29}a^{11}+\frac{48\cdots 04}{22\cdots 29}a^{10}-\frac{60\cdots 23}{22\cdots 29}a^{9}-\frac{14\cdots 32}{22\cdots 29}a^{8}+\frac{18\cdots 12}{22\cdots 29}a^{7}+\frac{19\cdots 89}{22\cdots 29}a^{6}-\frac{29\cdots 97}{22\cdots 29}a^{5}-\frac{98\cdots 00}{22\cdots 29}a^{4}+\frac{21\cdots 00}{22\cdots 29}a^{3}+\frac{76\cdots 54}{22\cdots 29}a^{2}-\frac{56\cdots 38}{22\cdots 29}a-\frac{47\cdots 73}{22\cdots 29}$, $\frac{20\cdots 86}{32\cdots 99}a^{19}+\frac{83\cdots 09}{32\cdots 99}a^{18}-\frac{14\cdots 18}{32\cdots 99}a^{17}-\frac{34\cdots 49}{32\cdots 99}a^{16}+\frac{43\cdots 94}{32\cdots 99}a^{15}+\frac{29\cdots 74}{32\cdots 99}a^{14}-\frac{63\cdots 49}{32\cdots 99}a^{13}+\frac{44\cdots 88}{32\cdots 99}a^{12}+\frac{51\cdots 98}{32\cdots 99}a^{11}-\frac{85\cdots 80}{32\cdots 99}a^{10}-\frac{22\cdots 77}{32\cdots 99}a^{9}+\frac{45\cdots 28}{32\cdots 99}a^{8}+\frac{51\cdots 69}{32\cdots 99}a^{7}-\frac{10\cdots 45}{32\cdots 99}a^{6}-\frac{66\cdots 04}{32\cdots 99}a^{5}+\frac{95\cdots 24}{32\cdots 99}a^{4}+\frac{46\cdots 43}{32\cdots 99}a^{3}-\frac{21\cdots 12}{32\cdots 99}a^{2}-\frac{14\cdots 74}{32\cdots 99}a-\frac{83\cdots 61}{32\cdots 99}$, $\frac{18\cdots 49}{22\cdots 29}a^{19}+\frac{60\cdots 83}{22\cdots 29}a^{18}-\frac{13\cdots 05}{22\cdots 29}a^{17}-\frac{20\cdots 35}{22\cdots 29}a^{16}+\frac{38\cdots 21}{22\cdots 29}a^{15}-\frac{33\cdots 12}{22\cdots 29}a^{14}-\frac{56\cdots 58}{22\cdots 29}a^{13}+\frac{81\cdots 89}{22\cdots 29}a^{12}+\frac{44\cdots 26}{22\cdots 29}a^{11}-\frac{10\cdots 28}{22\cdots 29}a^{10}-\frac{18\cdots 23}{22\cdots 29}a^{9}+\frac{50\cdots 98}{22\cdots 29}a^{8}+\frac{39\cdots 87}{22\cdots 29}a^{7}-\frac{10\cdots 21}{22\cdots 29}a^{6}-\frac{46\cdots 65}{22\cdots 29}a^{5}+\frac{86\cdots 80}{22\cdots 29}a^{4}+\frac{32\cdots 25}{22\cdots 29}a^{3}-\frac{18\cdots 96}{22\cdots 29}a^{2}-\frac{10\cdots 83}{22\cdots 29}a-\frac{65\cdots 02}{22\cdots 29}$, $\frac{16\cdots 03}{61\cdots 01}a^{19}+\frac{90\cdots 18}{61\cdots 01}a^{18}-\frac{11\cdots 68}{61\cdots 01}a^{17}-\frac{41\cdots 34}{61\cdots 01}a^{16}+\frac{32\cdots 05}{61\cdots 01}a^{15}+\frac{58\cdots 34}{61\cdots 01}a^{14}-\frac{46\cdots 63}{61\cdots 01}a^{13}-\frac{99\cdots 79}{61\cdots 01}a^{12}+\frac{35\cdots 70}{61\cdots 01}a^{11}-\frac{34\cdots 57}{61\cdots 01}a^{10}-\frac{13\cdots 02}{61\cdots 01}a^{9}+\frac{22\cdots 05}{61\cdots 01}a^{8}+\frac{28\cdots 39}{61\cdots 01}a^{7}-\frac{47\cdots 65}{61\cdots 01}a^{6}-\frac{31\cdots 09}{61\cdots 01}a^{5}+\frac{37\cdots 66}{61\cdots 01}a^{4}+\frac{18\cdots 37}{61\cdots 01}a^{3}-\frac{60\cdots 55}{61\cdots 01}a^{2}-\frac{48\cdots 08}{61\cdots 01}a-\frac{29\cdots 06}{61\cdots 01}$, $\frac{54\cdots 61}{61\cdots 01}a^{19}+\frac{14\cdots 47}{61\cdots 01}a^{18}-\frac{39\cdots 63}{61\cdots 01}a^{17}-\frac{36\cdots 51}{61\cdots 01}a^{16}+\frac{11\cdots 35}{61\cdots 01}a^{15}-\frac{76\cdots 68}{61\cdots 01}a^{14}-\frac{15\cdots 99}{61\cdots 01}a^{13}+\frac{33\cdots 73}{61\cdots 01}a^{12}+\frac{12\cdots 39}{61\cdots 01}a^{11}-\frac{38\cdots 91}{61\cdots 01}a^{10}-\frac{46\cdots 60}{61\cdots 01}a^{9}+\frac{17\cdots 28}{61\cdots 01}a^{8}+\frac{89\cdots 74}{61\cdots 01}a^{7}-\frac{34\cdots 94}{61\cdots 01}a^{6}-\frac{89\cdots 34}{61\cdots 01}a^{5}+\frac{28\cdots 58}{61\cdots 01}a^{4}+\frac{54\cdots 61}{61\cdots 01}a^{3}-\frac{77\cdots 87}{61\cdots 01}a^{2}-\frac{16\cdots 99}{61\cdots 01}a-\frac{60\cdots 85}{61\cdots 01}$, $\frac{37\cdots 30}{61\cdots 01}a^{19}+\frac{88\cdots 09}{61\cdots 01}a^{18}-\frac{26\cdots 71}{61\cdots 01}a^{17}-\frac{17\cdots 64}{61\cdots 01}a^{16}+\frac{76\cdots 06}{61\cdots 01}a^{15}-\frac{72\cdots 06}{61\cdots 01}a^{14}-\frac{11\cdots 16}{61\cdots 01}a^{13}+\frac{25\cdots 39}{61\cdots 01}a^{12}+\frac{84\cdots 65}{61\cdots 01}a^{11}-\frac{27\cdots 03}{61\cdots 01}a^{10}-\frac{32\cdots 32}{61\cdots 01}a^{9}+\frac{12\cdots 29}{61\cdots 01}a^{8}+\frac{64\cdots 64}{61\cdots 01}a^{7}-\frac{24\cdots 96}{61\cdots 01}a^{6}-\frac{67\cdots 83}{61\cdots 01}a^{5}+\frac{19\cdots 33}{61\cdots 01}a^{4}+\frac{44\cdots 06}{61\cdots 01}a^{3}-\frac{49\cdots 08}{61\cdots 01}a^{2}-\frac{14\cdots 78}{61\cdots 01}a-\frac{73\cdots 39}{61\cdots 01}$, $\frac{11\cdots 83}{61\cdots 01}a^{19}+\frac{33\cdots 48}{61\cdots 01}a^{18}-\frac{84\cdots 08}{61\cdots 01}a^{17}-\frac{94\cdots 20}{61\cdots 01}a^{16}+\frac{24\cdots 00}{61\cdots 01}a^{15}-\frac{12\cdots 25}{61\cdots 01}a^{14}-\frac{34\cdots 78}{61\cdots 01}a^{13}+\frac{65\cdots 10}{61\cdots 01}a^{12}+\frac{26\cdots 95}{61\cdots 01}a^{11}-\frac{76\cdots 94}{61\cdots 01}a^{10}-\frac{10\cdots 58}{61\cdots 01}a^{9}+\frac{34\cdots 77}{61\cdots 01}a^{8}+\frac{19\cdots 51}{61\cdots 01}a^{7}-\frac{66\cdots 19}{61\cdots 01}a^{6}-\frac{20\cdots 64}{61\cdots 01}a^{5}+\frac{51\cdots 92}{61\cdots 01}a^{4}+\frac{12\cdots 26}{61\cdots 01}a^{3}-\frac{11\cdots 76}{61\cdots 01}a^{2}-\frac{38\cdots 44}{61\cdots 01}a-\frac{20\cdots 23}{61\cdots 01}$, $\frac{51\cdots 63}{61\cdots 01}a^{19}+\frac{31\cdots 99}{61\cdots 01}a^{18}-\frac{36\cdots 74}{61\cdots 01}a^{17}-\frac{16\cdots 77}{61\cdots 01}a^{16}+\frac{95\cdots 39}{56\cdots 89}a^{15}+\frac{29\cdots 81}{61\cdots 01}a^{14}-\frac{15\cdots 63}{61\cdots 01}a^{13}-\frac{20\cdots 42}{61\cdots 01}a^{12}+\frac{13\cdots 55}{61\cdots 01}a^{11}+\frac{20\cdots 89}{61\cdots 01}a^{10}-\frac{60\cdots 74}{61\cdots 01}a^{9}+\frac{31\cdots 21}{61\cdots 01}a^{8}+\frac{15\cdots 91}{61\cdots 01}a^{7}-\frac{12\cdots 77}{61\cdots 01}a^{6}-\frac{20\cdots 95}{61\cdots 01}a^{5}+\frac{14\cdots 72}{61\cdots 01}a^{4}+\frac{13\cdots 51}{61\cdots 01}a^{3}-\frac{24\cdots 89}{61\cdots 01}a^{2}-\frac{36\cdots 13}{61\cdots 01}a-\frac{24\cdots 75}{61\cdots 01}$, $\frac{53\cdots 59}{61\cdots 01}a^{19}+\frac{15\cdots 69}{61\cdots 01}a^{18}-\frac{38\cdots 92}{61\cdots 01}a^{17}-\frac{42\cdots 83}{61\cdots 01}a^{16}+\frac{10\cdots 17}{61\cdots 01}a^{15}-\frac{52\cdots 62}{61\cdots 01}a^{14}-\frac{15\cdots 19}{61\cdots 01}a^{13}+\frac{29\cdots 05}{61\cdots 01}a^{12}+\frac{12\cdots 36}{61\cdots 01}a^{11}-\frac{34\cdots 32}{61\cdots 01}a^{10}-\frac{47\cdots 68}{61\cdots 01}a^{9}+\frac{15\cdots 23}{61\cdots 01}a^{8}+\frac{98\cdots 69}{61\cdots 01}a^{7}-\frac{31\cdots 72}{61\cdots 01}a^{6}-\frac{10\cdots 42}{61\cdots 01}a^{5}+\frac{26\cdots 32}{61\cdots 01}a^{4}+\frac{71\cdots 40}{61\cdots 01}a^{3}-\frac{64\cdots 32}{61\cdots 01}a^{2}-\frac{22\cdots 95}{61\cdots 01}a-\frac{11\cdots 63}{56\cdots 89}$, $\frac{35\cdots 90}{61\cdots 01}a^{19}+\frac{24\cdots 67}{61\cdots 01}a^{18}-\frac{25\cdots 56}{61\cdots 01}a^{17}-\frac{12\cdots 10}{61\cdots 01}a^{16}+\frac{76\cdots 20}{61\cdots 01}a^{15}+\frac{23\cdots 55}{61\cdots 01}a^{14}-\frac{12\cdots 40}{61\cdots 01}a^{13}-\frac{15\cdots 43}{61\cdots 01}a^{12}+\frac{11\cdots 11}{61\cdots 01}a^{11}-\frac{42\cdots 88}{61\cdots 01}a^{10}-\frac{55\cdots 58}{61\cdots 01}a^{9}+\frac{96\cdots 81}{61\cdots 01}a^{8}+\frac{14\cdots 18}{61\cdots 01}a^{7}-\frac{40\cdots 96}{61\cdots 01}a^{6}-\frac{17\cdots 25}{61\cdots 01}a^{5}+\frac{66\cdots 15}{61\cdots 01}a^{4}+\frac{60\cdots 57}{61\cdots 01}a^{3}-\frac{37\cdots 17}{61\cdots 01}a^{2}+\frac{39\cdots 79}{61\cdots 01}a+\frac{58\cdots 82}{61\cdots 01}$, $\frac{41\cdots 75}{61\cdots 01}a^{19}-\frac{43\cdots 85}{61\cdots 01}a^{18}-\frac{30\cdots 92}{61\cdots 01}a^{17}+\frac{36\cdots 45}{61\cdots 01}a^{16}+\frac{85\cdots 90}{61\cdots 01}a^{15}-\frac{11\cdots 69}{61\cdots 01}a^{14}-\frac{10\cdots 02}{61\cdots 01}a^{13}+\frac{18\cdots 42}{61\cdots 01}a^{12}+\frac{49\cdots 00}{61\cdots 01}a^{11}-\frac{14\cdots 76}{61\cdots 01}a^{10}+\frac{96\cdots 20}{61\cdots 01}a^{9}+\frac{58\cdots 86}{61\cdots 01}a^{8}-\frac{13\cdots 35}{61\cdots 01}a^{7}-\frac{10\cdots 62}{61\cdots 01}a^{6}+\frac{32\cdots 00}{61\cdots 01}a^{5}+\frac{97\cdots 39}{61\cdots 01}a^{4}-\frac{29\cdots 48}{61\cdots 01}a^{3}-\frac{47\cdots 30}{61\cdots 01}a^{2}+\frac{92\cdots 32}{61\cdots 01}a+\frac{12\cdots 14}{61\cdots 01}$
|
| |
| Regulator: | \( 3313588880654819000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{20}\cdot(2\pi)^{0}\cdot 3313588880654819000 \cdot 275}{2\cdot\sqrt{10818327022517881605935827576487172209050638458251953125}}\cr\approx \mathstrut & 0.145251686268944 \end{aligned}\] (assuming GRH)
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.15125.1, 5.5.41371966801.1, 10.10.5348873865572019292503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/padicField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/padicField/29.5.0.1}{5} }^{4}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/padicField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.5.4.15a1.4 | $x^{20} + 16 x^{16} + 12 x^{15} + 96 x^{12} + 144 x^{11} + 54 x^{10} + 256 x^{8} + 576 x^{7} + 432 x^{6} + 108 x^{5} + 256 x^{4} + 768 x^{3} + 864 x^{2} + 432 x + 86$ | $4$ | $5$ | $15$ | 20T1 | not computed |
|
\(11\)
| 11.1.10.9a1.3 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $$[\ ]_{10}$$ |
| 11.1.10.9a1.3 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $$[\ ]_{10}$$ | |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |