sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2255, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,8,8]))
pari:[g,chi] = znchar(Mod(201,2255))
\(\chi_{2255}(201,\cdot)\)
\(\chi_{2255}(346,\cdot)\)
\(\chi_{2255}(1896,\cdot)\)
\(\chi_{2255}(2066,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((452,1641,826)\) → \((1,e\left(\frac{4}{5}\right),e\left(\frac{4}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
| \( \chi_{ 2255 }(201, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) |
sage:chi.jacobi_sum(n)