Normalized defining polynomial
\( x^{20} - 15 x^{18} - 103 x^{16} + 954 x^{14} + 2017 x^{12} - 3645 x^{10} - 2285 x^{8} + 5318 x^{6} + \cdots - 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[14, 3]$ |
| |
| Discriminant: |
\(-69761895802737851304509440000000000\)
\(\medspace = -\,2^{44}\cdot 5^{10}\cdot 67^{8}\)
|
| |
| Root discriminant: | \(55.23\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(5\), \(67\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{10}a^{10}-\frac{1}{5}a^{8}-\frac{1}{10}a^{6}-\frac{1}{5}a^{4}-\frac{1}{2}a^{2}+\frac{2}{5}$, $\frac{1}{10}a^{11}-\frac{1}{5}a^{9}-\frac{1}{10}a^{7}-\frac{1}{5}a^{5}-\frac{1}{2}a^{3}+\frac{2}{5}a$, $\frac{1}{40}a^{12}-\frac{1}{40}a^{10}+\frac{1}{20}a^{8}-\frac{3}{40}a^{6}-\frac{1}{2}a^{5}-\frac{3}{10}a^{4}-\frac{1}{2}a^{3}-\frac{11}{40}a^{2}-\frac{1}{2}a-\frac{11}{40}$, $\frac{1}{40}a^{13}-\frac{1}{40}a^{11}+\frac{1}{20}a^{9}-\frac{3}{40}a^{7}-\frac{1}{2}a^{6}-\frac{3}{10}a^{5}-\frac{1}{2}a^{4}-\frac{11}{40}a^{3}-\frac{1}{2}a^{2}-\frac{11}{40}a$, $\frac{1}{40}a^{14}+\frac{1}{40}a^{10}-\frac{1}{40}a^{8}-\frac{1}{2}a^{7}-\frac{3}{8}a^{6}+\frac{17}{40}a^{4}+\frac{9}{20}a^{2}-\frac{1}{2}a-\frac{11}{40}$, $\frac{1}{40}a^{15}+\frac{1}{40}a^{11}-\frac{1}{40}a^{9}-\frac{3}{8}a^{7}+\frac{17}{40}a^{5}-\frac{1}{2}a^{4}+\frac{9}{20}a^{3}-\frac{1}{2}a^{2}-\frac{11}{40}a-\frac{1}{2}$, $\frac{1}{200}a^{16}+\frac{1}{100}a^{14}+\frac{1}{100}a^{10}-\frac{39}{200}a^{8}+\frac{7}{20}a^{6}+\frac{11}{50}a^{4}+\frac{19}{50}a^{2}-\frac{31}{200}$, $\frac{1}{200}a^{17}+\frac{1}{100}a^{15}+\frac{1}{100}a^{11}-\frac{39}{200}a^{9}+\frac{7}{20}a^{7}+\frac{11}{50}a^{5}+\frac{19}{50}a^{3}-\frac{31}{200}a$, $\frac{1}{8265765400}a^{18}+\frac{16987463}{8265765400}a^{16}+\frac{82974027}{8265765400}a^{14}+\frac{30686411}{4132882700}a^{12}-\frac{51509359}{1033220675}a^{10}-\frac{276299547}{4132882700}a^{8}-\frac{1}{2}a^{7}-\frac{1825197681}{8265765400}a^{6}-\frac{272725083}{1653153080}a^{4}-\frac{115215837}{330630616}a^{2}-\frac{1}{2}a-\frac{685376413}{4132882700}$, $\frac{1}{8265765400}a^{19}+\frac{16987463}{8265765400}a^{17}+\frac{82974027}{8265765400}a^{15}+\frac{30686411}{4132882700}a^{13}-\frac{51509359}{1033220675}a^{11}-\frac{276299547}{4132882700}a^{9}-\frac{1825197681}{8265765400}a^{7}-\frac{272725083}{1653153080}a^{5}-\frac{1}{2}a^{4}-\frac{115215837}{330630616}a^{3}-\frac{1}{2}a^{2}-\frac{685376413}{4132882700}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{37753734}{1033220675}a^{18}-\frac{536620331}{1033220675}a^{16}-\frac{4315087188}{1033220675}a^{14}+\frac{32688786728}{1033220675}a^{12}+\frac{102358476866}{1033220675}a^{10}-\frac{61080305704}{1033220675}a^{8}-\frac{145924616204}{1033220675}a^{6}+\frac{93771352748}{1033220675}a^{4}-\frac{2670646858}{1033220675}a^{2}-\frac{1664034941}{1033220675}$, $\frac{37753734}{1033220675}a^{19}-\frac{536620331}{1033220675}a^{17}-\frac{4315087188}{1033220675}a^{15}+\frac{32688786728}{1033220675}a^{13}+\frac{102358476866}{1033220675}a^{11}-\frac{61080305704}{1033220675}a^{9}-\frac{145924616204}{1033220675}a^{7}+\frac{93771352748}{1033220675}a^{5}-\frac{2670646858}{1033220675}a^{3}-\frac{1664034941}{1033220675}a$, $\frac{2240635493}{8265765400}a^{19}-\frac{838237709}{206644135}a^{17}-\frac{28999094254}{1033220675}a^{15}+\frac{532351922459}{2066441350}a^{13}+\frac{4596678134391}{8265765400}a^{11}-\frac{2002403169589}{2066441350}a^{9}-\frac{2720047882739}{4132882700}a^{7}+\frac{1459826293933}{1033220675}a^{5}-\frac{5024983991549}{8265765400}a^{3}+\frac{144640567279}{2066441350}a$, $\frac{1561322129}{8265765400}a^{18}-\frac{562036596}{206644135}a^{16}-\frac{87137132823}{4132882700}a^{14}+\frac{346003369817}{2066441350}a^{12}+\frac{3974702048813}{8265765400}a^{10}-\frac{1628648390889}{4132882700}a^{8}-\frac{1342455107741}{2066441350}a^{6}+\frac{2510454157111}{4132882700}a^{4}-\frac{980826136157}{8265765400}a^{2}+\frac{3832265489}{4132882700}$, $\frac{1254826113}{4132882700}a^{19}-\frac{217148039}{1653153080}a^{18}-\frac{9286405539}{2066441350}a^{17}+\frac{159563909}{82657654}a^{16}-\frac{265696855711}{8265765400}a^{15}+\frac{5831539913}{413288270}a^{14}+\frac{1169357230311}{4132882700}a^{13}-\frac{24993075027}{206644135}a^{12}+\frac{1101222025837}{1653153080}a^{11}-\frac{497659553169}{1653153080}a^{10}-\frac{7890821951293}{8265765400}a^{9}+\frac{79049060947}{206644135}a^{8}-\frac{6812820872981}{8265765400}a^{7}+\frac{331819861139}{826576540}a^{6}+\frac{11670275024709}{8265765400}a^{5}-\frac{234617380751}{413288270}a^{4}-\frac{2213693319897}{4132882700}a^{3}+\frac{276110582283}{1653153080}a^{2}+\frac{423136013043}{8265765400}a-\frac{787232672}{206644135}$, $\frac{284368527}{1033220675}a^{19}-\frac{16516776627}{4132882700}a^{17}-\frac{62466009393}{2066441350}a^{15}+\frac{1023170046071}{4132882700}a^{13}+\frac{2768143764287}{4132882700}a^{11}-\frac{2691793102283}{4132882700}a^{9}-\frac{3496519468963}{4132882700}a^{7}+\frac{2062602461213}{2066441350}a^{5}-\frac{1322658581221}{4132882700}a^{3}+\frac{68027350669}{2066441350}a$, $\frac{1254826113}{4132882700}a^{19}+\frac{217148039}{1653153080}a^{18}-\frac{9286405539}{2066441350}a^{17}-\frac{159563909}{82657654}a^{16}-\frac{265696855711}{8265765400}a^{15}-\frac{5831539913}{413288270}a^{14}+\frac{1169357230311}{4132882700}a^{13}+\frac{24993075027}{206644135}a^{12}+\frac{1101222025837}{1653153080}a^{11}+\frac{497659553169}{1653153080}a^{10}-\frac{7890821951293}{8265765400}a^{9}-\frac{79049060947}{206644135}a^{8}-\frac{6812820872981}{8265765400}a^{7}-\frac{331819861139}{826576540}a^{6}+\frac{11670275024709}{8265765400}a^{5}+\frac{234617380751}{413288270}a^{4}-\frac{2213693319897}{4132882700}a^{3}-\frac{276110582283}{1653153080}a^{2}+\frac{423136013043}{8265765400}a+\frac{787232672}{206644135}$, $\frac{77002853}{4132882700}a^{19}-\frac{99806913}{413288270}a^{17}-\frac{2527414053}{1033220675}a^{15}+\frac{54803048031}{4132882700}a^{13}+\frac{142362955213}{2066441350}a^{11}+\frac{46602276186}{1033220675}a^{9}-\frac{259753762193}{4132882700}a^{7}-\frac{43037749174}{1033220675}a^{5}+\frac{5036437119}{1033220675}a^{3}+\frac{31322934301}{4132882700}a$, $\frac{6606000459}{8265765400}a^{19}-\frac{109492341}{1653153080}a^{18}-\frac{99158749121}{8265765400}a^{17}+\frac{1642839569}{1653153080}a^{16}-\frac{169850409357}{2066441350}a^{15}+\frac{563999093}{82657654}a^{14}+\frac{3154715770329}{4132882700}a^{13}-\frac{104627022413}{1653153080}a^{12}+\frac{13260163140031}{8265765400}a^{11}-\frac{110756862117}{826576540}a^{10}-\frac{24232318837019}{8265765400}a^{9}+\frac{407307055549}{1653153080}a^{8}-\frac{3717388011501}{2066441350}a^{7}+\frac{276752112513}{1653153080}a^{6}+\frac{17681008353969}{4132882700}a^{5}-\frac{291422555673}{826576540}a^{4}-\frac{16369064879233}{8265765400}a^{3}+\frac{29735508524}{206644135}a^{2}+\frac{2141334823919}{8265765400}a-\frac{12200793977}{826576540}$, $\frac{4613778461}{8265765400}a^{19}+\frac{114412489}{826576540}a^{18}-\frac{33949489919}{4132882700}a^{17}-\frac{16226108613}{8265765400}a^{16}-\frac{24698726463}{413288270}a^{15}-\frac{131178058201}{8265765400}a^{14}+\frac{4254553100207}{8265765400}a^{13}+\frac{98506676299}{826576540}a^{12}+\frac{1307040541702}{1033220675}a^{11}+\frac{3120774818159}{8265765400}a^{10}-\frac{671360226003}{413288270}a^{9}-\frac{834552349349}{4132882700}a^{8}-\frac{13047258010911}{8265765400}a^{7}-\frac{833207561507}{1653153080}a^{6}+\frac{4999731861479}{2066441350}a^{5}+\frac{2716461027713}{8265765400}a^{4}-\frac{3642396552903}{4132882700}a^{3}-\frac{152766694269}{4132882700}a^{2}+\frac{28598169513}{330630616}a+\frac{13275201079}{4132882700}$, $\frac{4613778461}{8265765400}a^{19}-\frac{114412489}{826576540}a^{18}-\frac{33949489919}{4132882700}a^{17}+\frac{16226108613}{8265765400}a^{16}-\frac{24698726463}{413288270}a^{15}+\frac{131178058201}{8265765400}a^{14}+\frac{4254553100207}{8265765400}a^{13}-\frac{98506676299}{826576540}a^{12}+\frac{1307040541702}{1033220675}a^{11}-\frac{3120774818159}{8265765400}a^{10}-\frac{671360226003}{413288270}a^{9}+\frac{834552349349}{4132882700}a^{8}-\frac{13047258010911}{8265765400}a^{7}+\frac{833207561507}{1653153080}a^{6}+\frac{4999731861479}{2066441350}a^{5}-\frac{2716461027713}{8265765400}a^{4}-\frac{3642396552903}{4132882700}a^{3}+\frac{152766694269}{4132882700}a^{2}+\frac{28598169513}{330630616}a-\frac{13275201079}{4132882700}$, $\frac{247568881}{2066441350}a^{19}+\frac{16479389}{330630616}a^{18}-\frac{3643096849}{2066441350}a^{17}-\frac{118592593}{165315308}a^{16}-\frac{106049466463}{8265765400}a^{15}-\frac{4602639093}{826576540}a^{14}+\frac{456598207329}{4132882700}a^{13}+\frac{36497515367}{826576540}a^{12}+\frac{2246402239091}{8265765400}a^{11}+\frac{210309463279}{1653153080}a^{10}-\frac{2887445063209}{8265765400}a^{9}-\frac{42822224291}{413288270}a^{8}-\frac{2829698393829}{8265765400}a^{7}-\frac{143401093983}{826576540}a^{6}+\frac{4279072818993}{8265765400}a^{5}+\frac{130870566891}{826576540}a^{4}-\frac{194632289131}{1033220675}a^{3}-\frac{49901232807}{1653153080}a^{2}+\frac{176403066579}{8265765400}a+\frac{930136629}{826576540}$, $\frac{724151471}{8265765400}a^{19}-\frac{77941553}{413288270}a^{18}-\frac{5694566399}{4132882700}a^{17}+\frac{903599741}{330630616}a^{16}-\frac{13390196779}{1653153080}a^{15}+\frac{34401750167}{1653153080}a^{14}+\frac{748970191197}{8265765400}a^{13}-\frac{55966972043}{330630616}a^{12}+\frac{987325875061}{8265765400}a^{11}-\frac{385155042219}{826576540}a^{10}-\frac{788365270061}{1653153080}a^{9}+\frac{369256718603}{826576540}a^{8}-\frac{48761252462}{1033220675}a^{7}+\frac{267447686781}{413288270}a^{6}+\frac{5704510527561}{8265765400}a^{5}-\frac{1096894343203}{1653153080}a^{4}-\frac{904265360979}{2066441350}a^{3}+\frac{229393483479}{1653153080}a^{2}+\frac{14115838813}{206644135}a-\frac{6671504773}{1653153080}$, $\frac{321221019}{8265765400}a^{19}+\frac{88323071}{1033220675}a^{18}-\frac{2165317829}{4132882700}a^{17}-\frac{9906264303}{8265765400}a^{16}-\frac{20119985771}{4132882700}a^{15}-\frac{20632935917}{2066441350}a^{14}+\frac{253764260653}{8265765400}a^{13}+\frac{593807750961}{8265765400}a^{12}+\frac{548473975151}{4132882700}a^{11}+\frac{402511389419}{1653153080}a^{10}-\frac{14058563073}{4132882700}a^{9}-\frac{639052136459}{8265765400}a^{8}-\frac{2202787100879}{8265765400}a^{7}-\frac{2378756995803}{8265765400}a^{6}-\frac{17443352461}{826576540}a^{5}+\frac{714685787221}{4132882700}a^{4}+\frac{22517532399}{165315308}a^{3}-\frac{171072448667}{8265765400}a^{2}-\frac{207702779439}{8265765400}a-\frac{2163165279}{2066441350}$, $\frac{306623509}{826576540}a^{19}+\frac{1559568173}{8265765400}a^{18}-\frac{22337115637}{4132882700}a^{17}-\frac{4518839437}{1653153080}a^{16}-\frac{83720405967}{2066441350}a^{15}-\frac{86115657291}{4132882700}a^{14}+\frac{277873048911}{826576540}a^{13}+\frac{1399758498031}{8265765400}a^{12}+\frac{1840624989353}{2066441350}a^{11}+\frac{1932539621743}{4132882700}a^{10}-\frac{3930407449507}{4132882700}a^{9}-\frac{3714910171691}{8265765400}a^{8}-\frac{1000048334273}{826576540}a^{7}-\frac{5522994289513}{8265765400}a^{6}+\frac{2891597304111}{2066441350}a^{5}+\frac{1356152466631}{2066441350}a^{4}-\frac{381398842913}{1033220675}a^{3}-\frac{487006668557}{4132882700}a^{2}+\frac{30524025073}{1033220675}a+\frac{7935452923}{4132882700}$, $\frac{7032954259}{4132882700}a^{19}+\frac{379498031}{1653153080}a^{18}-\frac{212189627579}{8265765400}a^{17}-\frac{3503923354}{1033220675}a^{16}-\frac{143163240759}{826576540}a^{15}-\frac{100879284687}{4132882700}a^{14}+\frac{13554863549951}{8265765400}a^{13}+\frac{88180361119}{413288270}a^{12}+\frac{27322192402613}{8265765400}a^{11}+\frac{4223095139911}{8265765400}a^{10}-\frac{10888841197221}{1653153080}a^{9}-\frac{2952863336141}{4132882700}a^{8}-\frac{30017511584923}{8265765400}a^{7}-\frac{139966420657}{206644135}a^{6}+\frac{19774204695517}{2066441350}a^{5}+\frac{4258742397281}{4132882700}a^{4}-\frac{37550949227543}{8265765400}a^{3}-\frac{2890055225687}{8265765400}a^{2}+\frac{241595842367}{413288270}a+\frac{140740712961}{4132882700}$
|
| |
| Regulator: | \( 82546344719.8 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{3}\cdot 82546344719.8 \cdot 1}{2\cdot\sqrt{69761895802737851304509440000000000}}\cr\approx \mathstrut & 0.635065117055 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.S_5$ (as 20T803):
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for $C_2^{10}.S_5$ |
| Character table for $C_2^{10}.S_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.5745920.1, 10.10.4126949580800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.4.35718090651001779867908833280000000.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{5}$ | R | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{5}$ | ${\href{/padicField/29.5.0.1}{5} }^{4}$ | ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.4a2.2 | $x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$ | $2$ | $2$ | $4$ | $D_{4}$ | $$[2, 2]^{2}$$ |
| 2.2.8.40c2.12 | $x^{16} + 12 x^{15} + 64 x^{14} + 224 x^{13} + 574 x^{12} + 1152 x^{11} + 1872 x^{10} + 2528 x^{9} + 2875 x^{8} + 2784 x^{7} + 2296 x^{6} + 1608 x^{5} + 942 x^{4} + 452 x^{3} + 172 x^{2} + 48 x + 19$ | $8$ | $2$ | $40$ | 16T751 | $$[\frac{4}{3}, \frac{4}{3}, \frac{8}{3}, \frac{8}{3}, 3, 3]_{3}^{2}$$ | |
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.3.2.3a1.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 5.3.2.3a1.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(67\)
| 67.4.1.0a1.1 | $x^{4} + 8 x^{2} + 54 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 67.4.1.0a1.1 | $x^{4} + 8 x^{2} + 54 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 67.4.3.8a1.3 | $x^{12} + 24 x^{10} + 162 x^{9} + 198 x^{8} + 2592 x^{7} + 9356 x^{6} + 11016 x^{5} + 70380 x^{4} + 162648 x^{3} + 17592 x^{2} + 648 x + 75$ | $3$ | $4$ | $8$ | $C_{12}$ | $$[\ ]_{3}^{4}$$ |