Normalized defining polynomial
\( x^{20} - 15 x^{18} - 103 x^{16} + 954 x^{14} + 2017 x^{12} - 3645 x^{10} - 2285 x^{8} + 5318 x^{6} - 2429 x^{4} + 313 x^{2} - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-69761895802737851304509440000000000=-\,2^{44}\cdot 5^{10}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{8} - \frac{1}{10} a^{6} - \frac{1}{5} a^{4} - \frac{1}{2} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} - \frac{1}{10} a^{7} - \frac{1}{5} a^{5} - \frac{1}{2} a^{3} + \frac{2}{5} a$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{10} + \frac{1}{20} a^{8} - \frac{3}{40} a^{6} - \frac{1}{2} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} - \frac{11}{40} a^{2} - \frac{1}{2} a - \frac{11}{40}$, $\frac{1}{40} a^{13} - \frac{1}{40} a^{11} + \frac{1}{20} a^{9} - \frac{3}{40} a^{7} - \frac{1}{2} a^{6} - \frac{3}{10} a^{5} - \frac{1}{2} a^{4} - \frac{11}{40} a^{3} - \frac{1}{2} a^{2} - \frac{11}{40} a$, $\frac{1}{40} a^{14} + \frac{1}{40} a^{10} - \frac{1}{40} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6} + \frac{17}{40} a^{4} + \frac{9}{20} a^{2} - \frac{1}{2} a - \frac{11}{40}$, $\frac{1}{40} a^{15} + \frac{1}{40} a^{11} - \frac{1}{40} a^{9} - \frac{3}{8} a^{7} + \frac{17}{40} a^{5} - \frac{1}{2} a^{4} + \frac{9}{20} a^{3} - \frac{1}{2} a^{2} - \frac{11}{40} a - \frac{1}{2}$, $\frac{1}{200} a^{16} + \frac{1}{100} a^{14} + \frac{1}{100} a^{10} - \frac{39}{200} a^{8} + \frac{7}{20} a^{6} + \frac{11}{50} a^{4} + \frac{19}{50} a^{2} - \frac{31}{200}$, $\frac{1}{200} a^{17} + \frac{1}{100} a^{15} + \frac{1}{100} a^{11} - \frac{39}{200} a^{9} + \frac{7}{20} a^{7} + \frac{11}{50} a^{5} + \frac{19}{50} a^{3} - \frac{31}{200} a$, $\frac{1}{8265765400} a^{18} + \frac{16987463}{8265765400} a^{16} + \frac{82974027}{8265765400} a^{14} + \frac{30686411}{4132882700} a^{12} - \frac{51509359}{1033220675} a^{10} - \frac{276299547}{4132882700} a^{8} - \frac{1}{2} a^{7} - \frac{1825197681}{8265765400} a^{6} - \frac{272725083}{1653153080} a^{4} - \frac{115215837}{330630616} a^{2} - \frac{1}{2} a - \frac{685376413}{4132882700}$, $\frac{1}{8265765400} a^{19} + \frac{16987463}{8265765400} a^{17} + \frac{82974027}{8265765400} a^{15} + \frac{30686411}{4132882700} a^{13} - \frac{51509359}{1033220675} a^{11} - \frac{276299547}{4132882700} a^{9} - \frac{1825197681}{8265765400} a^{7} - \frac{272725083}{1653153080} a^{5} - \frac{1}{2} a^{4} - \frac{115215837}{330630616} a^{3} - \frac{1}{2} a^{2} - \frac{685376413}{4132882700} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 82546344719.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.5745920.1, 10.10.4126949580800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $67$ | 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.12.8.1 | $x^{12} - 201 x^{9} + 13467 x^{6} - 300763 x^{3} + 161208968$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |