Properties

Label 20.14.697...000.2
Degree $20$
Signature $[14, 3]$
Discriminant $-6.976\times 10^{34}$
Root discriminant \(55.23\)
Ramified primes $2,5,67$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.S_5$ (as 20T803)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 - 15*x^18 - 103*x^16 + 954*x^14 + 2017*x^12 - 3645*x^10 - 2285*x^8 + 5318*x^6 - 2429*x^4 + 313*x^2 - 1)
 
Copy content gp:K = bnfinit(y^20 - 15*y^18 - 103*y^16 + 954*y^14 + 2017*y^12 - 3645*y^10 - 2285*y^8 + 5318*y^6 - 2429*y^4 + 313*y^2 - 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 15*x^18 - 103*x^16 + 954*x^14 + 2017*x^12 - 3645*x^10 - 2285*x^8 + 5318*x^6 - 2429*x^4 + 313*x^2 - 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 15*x^18 - 103*x^16 + 954*x^14 + 2017*x^12 - 3645*x^10 - 2285*x^8 + 5318*x^6 - 2429*x^4 + 313*x^2 - 1)
 

\( x^{20} - 15 x^{18} - 103 x^{16} + 954 x^{14} + 2017 x^{12} - 3645 x^{10} - 2285 x^{8} + 5318 x^{6} + \cdots - 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[14, 3]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-69761895802737851304509440000000000\) \(\medspace = -\,2^{44}\cdot 5^{10}\cdot 67^{8}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(55.23\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(5\), \(67\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{10}a^{10}-\frac{1}{5}a^{8}-\frac{1}{10}a^{6}-\frac{1}{5}a^{4}-\frac{1}{2}a^{2}+\frac{2}{5}$, $\frac{1}{10}a^{11}-\frac{1}{5}a^{9}-\frac{1}{10}a^{7}-\frac{1}{5}a^{5}-\frac{1}{2}a^{3}+\frac{2}{5}a$, $\frac{1}{40}a^{12}-\frac{1}{40}a^{10}+\frac{1}{20}a^{8}-\frac{3}{40}a^{6}-\frac{1}{2}a^{5}-\frac{3}{10}a^{4}-\frac{1}{2}a^{3}-\frac{11}{40}a^{2}-\frac{1}{2}a-\frac{11}{40}$, $\frac{1}{40}a^{13}-\frac{1}{40}a^{11}+\frac{1}{20}a^{9}-\frac{3}{40}a^{7}-\frac{1}{2}a^{6}-\frac{3}{10}a^{5}-\frac{1}{2}a^{4}-\frac{11}{40}a^{3}-\frac{1}{2}a^{2}-\frac{11}{40}a$, $\frac{1}{40}a^{14}+\frac{1}{40}a^{10}-\frac{1}{40}a^{8}-\frac{1}{2}a^{7}-\frac{3}{8}a^{6}+\frac{17}{40}a^{4}+\frac{9}{20}a^{2}-\frac{1}{2}a-\frac{11}{40}$, $\frac{1}{40}a^{15}+\frac{1}{40}a^{11}-\frac{1}{40}a^{9}-\frac{3}{8}a^{7}+\frac{17}{40}a^{5}-\frac{1}{2}a^{4}+\frac{9}{20}a^{3}-\frac{1}{2}a^{2}-\frac{11}{40}a-\frac{1}{2}$, $\frac{1}{200}a^{16}+\frac{1}{100}a^{14}+\frac{1}{100}a^{10}-\frac{39}{200}a^{8}+\frac{7}{20}a^{6}+\frac{11}{50}a^{4}+\frac{19}{50}a^{2}-\frac{31}{200}$, $\frac{1}{200}a^{17}+\frac{1}{100}a^{15}+\frac{1}{100}a^{11}-\frac{39}{200}a^{9}+\frac{7}{20}a^{7}+\frac{11}{50}a^{5}+\frac{19}{50}a^{3}-\frac{31}{200}a$, $\frac{1}{8265765400}a^{18}+\frac{16987463}{8265765400}a^{16}+\frac{82974027}{8265765400}a^{14}+\frac{30686411}{4132882700}a^{12}-\frac{51509359}{1033220675}a^{10}-\frac{276299547}{4132882700}a^{8}-\frac{1}{2}a^{7}-\frac{1825197681}{8265765400}a^{6}-\frac{272725083}{1653153080}a^{4}-\frac{115215837}{330630616}a^{2}-\frac{1}{2}a-\frac{685376413}{4132882700}$, $\frac{1}{8265765400}a^{19}+\frac{16987463}{8265765400}a^{17}+\frac{82974027}{8265765400}a^{15}+\frac{30686411}{4132882700}a^{13}-\frac{51509359}{1033220675}a^{11}-\frac{276299547}{4132882700}a^{9}-\frac{1825197681}{8265765400}a^{7}-\frac{272725083}{1653153080}a^{5}-\frac{1}{2}a^{4}-\frac{115215837}{330630616}a^{3}-\frac{1}{2}a^{2}-\frac{685376413}{4132882700}a-\frac{1}{2}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $16$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{37753734}{1033220675}a^{18}-\frac{536620331}{1033220675}a^{16}-\frac{4315087188}{1033220675}a^{14}+\frac{32688786728}{1033220675}a^{12}+\frac{102358476866}{1033220675}a^{10}-\frac{61080305704}{1033220675}a^{8}-\frac{145924616204}{1033220675}a^{6}+\frac{93771352748}{1033220675}a^{4}-\frac{2670646858}{1033220675}a^{2}-\frac{1664034941}{1033220675}$, $\frac{37753734}{1033220675}a^{19}-\frac{536620331}{1033220675}a^{17}-\frac{4315087188}{1033220675}a^{15}+\frac{32688786728}{1033220675}a^{13}+\frac{102358476866}{1033220675}a^{11}-\frac{61080305704}{1033220675}a^{9}-\frac{145924616204}{1033220675}a^{7}+\frac{93771352748}{1033220675}a^{5}-\frac{2670646858}{1033220675}a^{3}-\frac{1664034941}{1033220675}a$, $\frac{2240635493}{8265765400}a^{19}-\frac{838237709}{206644135}a^{17}-\frac{28999094254}{1033220675}a^{15}+\frac{532351922459}{2066441350}a^{13}+\frac{4596678134391}{8265765400}a^{11}-\frac{2002403169589}{2066441350}a^{9}-\frac{2720047882739}{4132882700}a^{7}+\frac{1459826293933}{1033220675}a^{5}-\frac{5024983991549}{8265765400}a^{3}+\frac{144640567279}{2066441350}a$, $\frac{1561322129}{8265765400}a^{18}-\frac{562036596}{206644135}a^{16}-\frac{87137132823}{4132882700}a^{14}+\frac{346003369817}{2066441350}a^{12}+\frac{3974702048813}{8265765400}a^{10}-\frac{1628648390889}{4132882700}a^{8}-\frac{1342455107741}{2066441350}a^{6}+\frac{2510454157111}{4132882700}a^{4}-\frac{980826136157}{8265765400}a^{2}+\frac{3832265489}{4132882700}$, $\frac{1254826113}{4132882700}a^{19}-\frac{217148039}{1653153080}a^{18}-\frac{9286405539}{2066441350}a^{17}+\frac{159563909}{82657654}a^{16}-\frac{265696855711}{8265765400}a^{15}+\frac{5831539913}{413288270}a^{14}+\frac{1169357230311}{4132882700}a^{13}-\frac{24993075027}{206644135}a^{12}+\frac{1101222025837}{1653153080}a^{11}-\frac{497659553169}{1653153080}a^{10}-\frac{7890821951293}{8265765400}a^{9}+\frac{79049060947}{206644135}a^{8}-\frac{6812820872981}{8265765400}a^{7}+\frac{331819861139}{826576540}a^{6}+\frac{11670275024709}{8265765400}a^{5}-\frac{234617380751}{413288270}a^{4}-\frac{2213693319897}{4132882700}a^{3}+\frac{276110582283}{1653153080}a^{2}+\frac{423136013043}{8265765400}a-\frac{787232672}{206644135}$, $\frac{284368527}{1033220675}a^{19}-\frac{16516776627}{4132882700}a^{17}-\frac{62466009393}{2066441350}a^{15}+\frac{1023170046071}{4132882700}a^{13}+\frac{2768143764287}{4132882700}a^{11}-\frac{2691793102283}{4132882700}a^{9}-\frac{3496519468963}{4132882700}a^{7}+\frac{2062602461213}{2066441350}a^{5}-\frac{1322658581221}{4132882700}a^{3}+\frac{68027350669}{2066441350}a$, $\frac{1254826113}{4132882700}a^{19}+\frac{217148039}{1653153080}a^{18}-\frac{9286405539}{2066441350}a^{17}-\frac{159563909}{82657654}a^{16}-\frac{265696855711}{8265765400}a^{15}-\frac{5831539913}{413288270}a^{14}+\frac{1169357230311}{4132882700}a^{13}+\frac{24993075027}{206644135}a^{12}+\frac{1101222025837}{1653153080}a^{11}+\frac{497659553169}{1653153080}a^{10}-\frac{7890821951293}{8265765400}a^{9}-\frac{79049060947}{206644135}a^{8}-\frac{6812820872981}{8265765400}a^{7}-\frac{331819861139}{826576540}a^{6}+\frac{11670275024709}{8265765400}a^{5}+\frac{234617380751}{413288270}a^{4}-\frac{2213693319897}{4132882700}a^{3}-\frac{276110582283}{1653153080}a^{2}+\frac{423136013043}{8265765400}a+\frac{787232672}{206644135}$, $\frac{77002853}{4132882700}a^{19}-\frac{99806913}{413288270}a^{17}-\frac{2527414053}{1033220675}a^{15}+\frac{54803048031}{4132882700}a^{13}+\frac{142362955213}{2066441350}a^{11}+\frac{46602276186}{1033220675}a^{9}-\frac{259753762193}{4132882700}a^{7}-\frac{43037749174}{1033220675}a^{5}+\frac{5036437119}{1033220675}a^{3}+\frac{31322934301}{4132882700}a$, $\frac{6606000459}{8265765400}a^{19}-\frac{109492341}{1653153080}a^{18}-\frac{99158749121}{8265765400}a^{17}+\frac{1642839569}{1653153080}a^{16}-\frac{169850409357}{2066441350}a^{15}+\frac{563999093}{82657654}a^{14}+\frac{3154715770329}{4132882700}a^{13}-\frac{104627022413}{1653153080}a^{12}+\frac{13260163140031}{8265765400}a^{11}-\frac{110756862117}{826576540}a^{10}-\frac{24232318837019}{8265765400}a^{9}+\frac{407307055549}{1653153080}a^{8}-\frac{3717388011501}{2066441350}a^{7}+\frac{276752112513}{1653153080}a^{6}+\frac{17681008353969}{4132882700}a^{5}-\frac{291422555673}{826576540}a^{4}-\frac{16369064879233}{8265765400}a^{3}+\frac{29735508524}{206644135}a^{2}+\frac{2141334823919}{8265765400}a-\frac{12200793977}{826576540}$, $\frac{4613778461}{8265765400}a^{19}+\frac{114412489}{826576540}a^{18}-\frac{33949489919}{4132882700}a^{17}-\frac{16226108613}{8265765400}a^{16}-\frac{24698726463}{413288270}a^{15}-\frac{131178058201}{8265765400}a^{14}+\frac{4254553100207}{8265765400}a^{13}+\frac{98506676299}{826576540}a^{12}+\frac{1307040541702}{1033220675}a^{11}+\frac{3120774818159}{8265765400}a^{10}-\frac{671360226003}{413288270}a^{9}-\frac{834552349349}{4132882700}a^{8}-\frac{13047258010911}{8265765400}a^{7}-\frac{833207561507}{1653153080}a^{6}+\frac{4999731861479}{2066441350}a^{5}+\frac{2716461027713}{8265765400}a^{4}-\frac{3642396552903}{4132882700}a^{3}-\frac{152766694269}{4132882700}a^{2}+\frac{28598169513}{330630616}a+\frac{13275201079}{4132882700}$, $\frac{4613778461}{8265765400}a^{19}-\frac{114412489}{826576540}a^{18}-\frac{33949489919}{4132882700}a^{17}+\frac{16226108613}{8265765400}a^{16}-\frac{24698726463}{413288270}a^{15}+\frac{131178058201}{8265765400}a^{14}+\frac{4254553100207}{8265765400}a^{13}-\frac{98506676299}{826576540}a^{12}+\frac{1307040541702}{1033220675}a^{11}-\frac{3120774818159}{8265765400}a^{10}-\frac{671360226003}{413288270}a^{9}+\frac{834552349349}{4132882700}a^{8}-\frac{13047258010911}{8265765400}a^{7}+\frac{833207561507}{1653153080}a^{6}+\frac{4999731861479}{2066441350}a^{5}-\frac{2716461027713}{8265765400}a^{4}-\frac{3642396552903}{4132882700}a^{3}+\frac{152766694269}{4132882700}a^{2}+\frac{28598169513}{330630616}a-\frac{13275201079}{4132882700}$, $\frac{247568881}{2066441350}a^{19}+\frac{16479389}{330630616}a^{18}-\frac{3643096849}{2066441350}a^{17}-\frac{118592593}{165315308}a^{16}-\frac{106049466463}{8265765400}a^{15}-\frac{4602639093}{826576540}a^{14}+\frac{456598207329}{4132882700}a^{13}+\frac{36497515367}{826576540}a^{12}+\frac{2246402239091}{8265765400}a^{11}+\frac{210309463279}{1653153080}a^{10}-\frac{2887445063209}{8265765400}a^{9}-\frac{42822224291}{413288270}a^{8}-\frac{2829698393829}{8265765400}a^{7}-\frac{143401093983}{826576540}a^{6}+\frac{4279072818993}{8265765400}a^{5}+\frac{130870566891}{826576540}a^{4}-\frac{194632289131}{1033220675}a^{3}-\frac{49901232807}{1653153080}a^{2}+\frac{176403066579}{8265765400}a+\frac{930136629}{826576540}$, $\frac{724151471}{8265765400}a^{19}-\frac{77941553}{413288270}a^{18}-\frac{5694566399}{4132882700}a^{17}+\frac{903599741}{330630616}a^{16}-\frac{13390196779}{1653153080}a^{15}+\frac{34401750167}{1653153080}a^{14}+\frac{748970191197}{8265765400}a^{13}-\frac{55966972043}{330630616}a^{12}+\frac{987325875061}{8265765400}a^{11}-\frac{385155042219}{826576540}a^{10}-\frac{788365270061}{1653153080}a^{9}+\frac{369256718603}{826576540}a^{8}-\frac{48761252462}{1033220675}a^{7}+\frac{267447686781}{413288270}a^{6}+\frac{5704510527561}{8265765400}a^{5}-\frac{1096894343203}{1653153080}a^{4}-\frac{904265360979}{2066441350}a^{3}+\frac{229393483479}{1653153080}a^{2}+\frac{14115838813}{206644135}a-\frac{6671504773}{1653153080}$, $\frac{321221019}{8265765400}a^{19}+\frac{88323071}{1033220675}a^{18}-\frac{2165317829}{4132882700}a^{17}-\frac{9906264303}{8265765400}a^{16}-\frac{20119985771}{4132882700}a^{15}-\frac{20632935917}{2066441350}a^{14}+\frac{253764260653}{8265765400}a^{13}+\frac{593807750961}{8265765400}a^{12}+\frac{548473975151}{4132882700}a^{11}+\frac{402511389419}{1653153080}a^{10}-\frac{14058563073}{4132882700}a^{9}-\frac{639052136459}{8265765400}a^{8}-\frac{2202787100879}{8265765400}a^{7}-\frac{2378756995803}{8265765400}a^{6}-\frac{17443352461}{826576540}a^{5}+\frac{714685787221}{4132882700}a^{4}+\frac{22517532399}{165315308}a^{3}-\frac{171072448667}{8265765400}a^{2}-\frac{207702779439}{8265765400}a-\frac{2163165279}{2066441350}$, $\frac{306623509}{826576540}a^{19}+\frac{1559568173}{8265765400}a^{18}-\frac{22337115637}{4132882700}a^{17}-\frac{4518839437}{1653153080}a^{16}-\frac{83720405967}{2066441350}a^{15}-\frac{86115657291}{4132882700}a^{14}+\frac{277873048911}{826576540}a^{13}+\frac{1399758498031}{8265765400}a^{12}+\frac{1840624989353}{2066441350}a^{11}+\frac{1932539621743}{4132882700}a^{10}-\frac{3930407449507}{4132882700}a^{9}-\frac{3714910171691}{8265765400}a^{8}-\frac{1000048334273}{826576540}a^{7}-\frac{5522994289513}{8265765400}a^{6}+\frac{2891597304111}{2066441350}a^{5}+\frac{1356152466631}{2066441350}a^{4}-\frac{381398842913}{1033220675}a^{3}-\frac{487006668557}{4132882700}a^{2}+\frac{30524025073}{1033220675}a+\frac{7935452923}{4132882700}$, $\frac{7032954259}{4132882700}a^{19}+\frac{379498031}{1653153080}a^{18}-\frac{212189627579}{8265765400}a^{17}-\frac{3503923354}{1033220675}a^{16}-\frac{143163240759}{826576540}a^{15}-\frac{100879284687}{4132882700}a^{14}+\frac{13554863549951}{8265765400}a^{13}+\frac{88180361119}{413288270}a^{12}+\frac{27322192402613}{8265765400}a^{11}+\frac{4223095139911}{8265765400}a^{10}-\frac{10888841197221}{1653153080}a^{9}-\frac{2952863336141}{4132882700}a^{8}-\frac{30017511584923}{8265765400}a^{7}-\frac{139966420657}{206644135}a^{6}+\frac{19774204695517}{2066441350}a^{5}+\frac{4258742397281}{4132882700}a^{4}-\frac{37550949227543}{8265765400}a^{3}-\frac{2890055225687}{8265765400}a^{2}+\frac{241595842367}{413288270}a+\frac{140740712961}{4132882700}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 82546344719.8 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{3}\cdot 82546344719.8 \cdot 1}{2\cdot\sqrt{69761895802737851304509440000000000}}\cr\approx \mathstrut & 0.635065117055 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 - 15*x^18 - 103*x^16 + 954*x^14 + 2017*x^12 - 3645*x^10 - 2285*x^8 + 5318*x^6 - 2429*x^4 + 313*x^2 - 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 15*x^18 - 103*x^16 + 954*x^14 + 2017*x^12 - 3645*x^10 - 2285*x^8 + 5318*x^6 - 2429*x^4 + 313*x^2 - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 15*x^18 - 103*x^16 + 954*x^14 + 2017*x^12 - 3645*x^10 - 2285*x^8 + 5318*x^6 - 2429*x^4 + 313*x^2 - 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 15*x^18 - 103*x^16 + 954*x^14 + 2017*x^12 - 3645*x^10 - 2285*x^8 + 5318*x^6 - 2429*x^4 + 313*x^2 - 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.S_5$ (as 20T803):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 122880
The 126 conjugacy class representatives for $C_2^{10}.S_5$
Character table for $C_2^{10}.S_5$

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.5745920.1, 10.10.4126949580800000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 20.4.35718090651001779867908833280000000.3

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{5}$ R ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ ${\href{/padicField/13.8.0.1}{8} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{5}$ ${\href{/padicField/29.5.0.1}{5} }^{4}$ ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.5.0.1}{5} }^{2}$ ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ ${\href{/padicField/47.8.0.1}{8} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.4a2.2$x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$$2$$2$$4$$D_{4}$$$[2, 2]^{2}$$
2.2.8.40c2.12$x^{16} + 12 x^{15} + 64 x^{14} + 224 x^{13} + 574 x^{12} + 1152 x^{11} + 1872 x^{10} + 2528 x^{9} + 2875 x^{8} + 2784 x^{7} + 2296 x^{6} + 1608 x^{5} + 942 x^{4} + 452 x^{3} + 172 x^{2} + 48 x + 19$$8$$2$$40$16T751$$[\frac{4}{3}, \frac{4}{3}, \frac{8}{3}, \frac{8}{3}, 3, 3]_{3}^{2}$$
\(5\) Copy content Toggle raw display 5.1.2.1a1.1$x^{2} + 5$$2$$1$$1$$C_2$$$[\ ]_{2}$$
5.1.2.1a1.1$x^{2} + 5$$2$$1$$1$$C_2$$$[\ ]_{2}$$
5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
5.3.2.3a1.2$x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
5.3.2.3a1.2$x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
\(67\) Copy content Toggle raw display 67.4.1.0a1.1$x^{4} + 8 x^{2} + 54 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
67.4.1.0a1.1$x^{4} + 8 x^{2} + 54 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
67.4.3.8a1.3$x^{12} + 24 x^{10} + 162 x^{9} + 198 x^{8} + 2592 x^{7} + 9356 x^{6} + 11016 x^{5} + 70380 x^{4} + 162648 x^{3} + 17592 x^{2} + 648 x + 75$$3$$4$$8$$C_{12}$$$[\ ]_{3}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)