Properties

Label 20T803
Order \(122880\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $803$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(3,19)(4,20)(5,17)(6,18)(7,16,8,15)(9,14,10,13), (1,7,14,16,2,8,13,15)(3,5,12,18,4,6,11,17)(9,20,10,19)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
120:  $S_5$
240:  $S_5\times C_2$
480:  20T116
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$
7680:  20T366
30720:  20T564
61440:  20T663

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 10: $S_5$

Low degree siblings

20T795 x 2, 20T803, 40T45661 x 2, 40T45662 x 2, 40T45729, 40T45739 x 2, 40T45740 x 2, 40T45811, 40T45857 x 2, 40T45909, 40T45994, 40T46017 x 2, 40T46024 x 2, 40T46035 x 2, 40T46036 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 126 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $122880=2^{13} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.