Properties

Label 20.0.340...281.2
Degree $20$
Signature $[0, 10]$
Discriminant $3.409\times 10^{31}$
Root discriminant \(37.73\)
Ramified primes $11,19$
Class number $55$ (GRH)
Class group [55] (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 4*x^18 + 9*x^17 + 11*x^16 - 56*x^15 + x^14 + 279*x^13 - 284*x^12 - 1111*x^11 + 2531*x^10 - 5555*x^9 - 7100*x^8 + 34875*x^7 + 625*x^6 - 175000*x^5 + 171875*x^4 + 703125*x^3 - 1562500*x^2 - 1953125*x + 9765625)
 
gp: K = bnfinit(y^20 - y^19 - 4*y^18 + 9*y^17 + 11*y^16 - 56*y^15 + y^14 + 279*y^13 - 284*y^12 - 1111*y^11 + 2531*y^10 - 5555*y^9 - 7100*y^8 + 34875*y^7 + 625*y^6 - 175000*y^5 + 171875*y^4 + 703125*y^3 - 1562500*y^2 - 1953125*y + 9765625, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - x^19 - 4*x^18 + 9*x^17 + 11*x^16 - 56*x^15 + x^14 + 279*x^13 - 284*x^12 - 1111*x^11 + 2531*x^10 - 5555*x^9 - 7100*x^8 + 34875*x^7 + 625*x^6 - 175000*x^5 + 171875*x^4 + 703125*x^3 - 1562500*x^2 - 1953125*x + 9765625);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - x^19 - 4*x^18 + 9*x^17 + 11*x^16 - 56*x^15 + x^14 + 279*x^13 - 284*x^12 - 1111*x^11 + 2531*x^10 - 5555*x^9 - 7100*x^8 + 34875*x^7 + 625*x^6 - 175000*x^5 + 171875*x^4 + 703125*x^3 - 1562500*x^2 - 1953125*x + 9765625)
 

\( x^{20} - x^{19} - 4 x^{18} + 9 x^{17} + 11 x^{16} - 56 x^{15} + x^{14} + 279 x^{13} - 284 x^{12} + \cdots + 9765625 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(34088221436915805032899514033281\) \(\medspace = 11^{18}\cdot 19^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(37.73\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{9/10}19^{1/2}\approx 37.72508414373865$
Ramified primes:   \(11\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $20$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(209=11\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{209}(1,·)$, $\chi_{209}(134,·)$, $\chi_{209}(75,·)$, $\chi_{209}(208,·)$, $\chi_{209}(18,·)$, $\chi_{209}(20,·)$, $\chi_{209}(151,·)$, $\chi_{209}(153,·)$, $\chi_{209}(94,·)$, $\chi_{209}(96,·)$, $\chi_{209}(37,·)$, $\chi_{209}(39,·)$, $\chi_{209}(170,·)$, $\chi_{209}(172,·)$, $\chi_{209}(113,·)$, $\chi_{209}(115,·)$, $\chi_{209}(56,·)$, $\chi_{209}(58,·)$, $\chi_{209}(189,·)$, $\chi_{209}(191,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{512}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{12655}a^{11}-\frac{1}{5}a^{10}+\frac{1}{5}a^{9}-\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}+\frac{1}{5}a^{5}-\frac{1}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}+\frac{1}{5}a-\frac{1111}{2531}$, $\frac{1}{63275}a^{12}-\frac{1}{63275}a^{11}-\frac{9}{25}a^{10}-\frac{11}{25}a^{9}+\frac{6}{25}a^{8}-\frac{1}{25}a^{7}-\frac{4}{25}a^{6}+\frac{9}{25}a^{5}+\frac{11}{25}a^{4}-\frac{6}{25}a^{3}+\frac{1}{25}a^{2}-\frac{1111}{12655}a-\frac{284}{2531}$, $\frac{1}{316375}a^{13}-\frac{1}{316375}a^{12}-\frac{4}{316375}a^{11}-\frac{36}{125}a^{10}-\frac{44}{125}a^{9}-\frac{26}{125}a^{8}-\frac{4}{125}a^{7}+\frac{9}{125}a^{6}+\frac{11}{125}a^{5}-\frac{56}{125}a^{4}+\frac{1}{125}a^{3}-\frac{1111}{63275}a^{2}-\frac{284}{12655}a+\frac{279}{2531}$, $\frac{1}{1581875}a^{14}-\frac{1}{1581875}a^{13}-\frac{4}{1581875}a^{12}+\frac{9}{1581875}a^{11}+\frac{81}{625}a^{10}+\frac{99}{625}a^{9}+\frac{121}{625}a^{8}+\frac{9}{625}a^{7}+\frac{11}{625}a^{6}-\frac{56}{625}a^{5}+\frac{1}{625}a^{4}-\frac{1111}{316375}a^{3}-\frac{284}{63275}a^{2}+\frac{279}{12655}a+\frac{1}{2531}$, $\frac{1}{7909375}a^{15}-\frac{1}{7909375}a^{14}-\frac{4}{7909375}a^{13}+\frac{9}{7909375}a^{12}+\frac{11}{7909375}a^{11}-\frac{526}{3125}a^{10}+\frac{121}{3125}a^{9}-\frac{616}{3125}a^{8}+\frac{11}{3125}a^{7}-\frac{56}{3125}a^{6}+\frac{1}{3125}a^{5}-\frac{1111}{1581875}a^{4}-\frac{284}{316375}a^{3}+\frac{279}{63275}a^{2}+\frac{1}{12655}a-\frac{56}{2531}$, $\frac{1}{39546875}a^{16}-\frac{1}{39546875}a^{15}-\frac{4}{39546875}a^{14}+\frac{9}{39546875}a^{13}+\frac{11}{39546875}a^{12}-\frac{56}{39546875}a^{11}+\frac{6371}{15625}a^{10}-\frac{3741}{15625}a^{9}+\frac{3136}{15625}a^{8}-\frac{56}{15625}a^{7}+\frac{1}{15625}a^{6}-\frac{1111}{7909375}a^{5}-\frac{284}{1581875}a^{4}+\frac{279}{316375}a^{3}+\frac{1}{63275}a^{2}-\frac{56}{12655}a+\frac{11}{2531}$, $\frac{1}{197734375}a^{17}-\frac{1}{197734375}a^{16}-\frac{4}{197734375}a^{15}+\frac{9}{197734375}a^{14}+\frac{11}{197734375}a^{13}-\frac{56}{197734375}a^{12}+\frac{1}{197734375}a^{11}+\frac{11884}{78125}a^{10}+\frac{34386}{78125}a^{9}-\frac{15681}{78125}a^{8}+\frac{1}{78125}a^{7}-\frac{1111}{39546875}a^{6}-\frac{284}{7909375}a^{5}+\frac{279}{1581875}a^{4}+\frac{1}{316375}a^{3}-\frac{56}{63275}a^{2}+\frac{11}{12655}a+\frac{9}{2531}$, $\frac{1}{988671875}a^{18}-\frac{1}{988671875}a^{17}-\frac{4}{988671875}a^{16}+\frac{9}{988671875}a^{15}+\frac{11}{988671875}a^{14}-\frac{56}{988671875}a^{13}+\frac{1}{988671875}a^{12}+\frac{279}{988671875}a^{11}+\frac{112511}{390625}a^{10}-\frac{171931}{390625}a^{9}+\frac{1}{390625}a^{8}-\frac{1111}{197734375}a^{7}-\frac{284}{39546875}a^{6}+\frac{279}{7909375}a^{5}+\frac{1}{1581875}a^{4}-\frac{56}{316375}a^{3}+\frac{11}{63275}a^{2}+\frac{9}{12655}a-\frac{4}{2531}$, $\frac{1}{4943359375}a^{19}-\frac{1}{4943359375}a^{18}-\frac{4}{4943359375}a^{17}+\frac{9}{4943359375}a^{16}+\frac{11}{4943359375}a^{15}-\frac{56}{4943359375}a^{14}+\frac{1}{4943359375}a^{13}+\frac{279}{4943359375}a^{12}-\frac{284}{4943359375}a^{11}-\frac{562556}{1953125}a^{10}+\frac{1}{1953125}a^{9}-\frac{1111}{988671875}a^{8}-\frac{284}{197734375}a^{7}+\frac{279}{39546875}a^{6}+\frac{1}{7909375}a^{5}-\frac{56}{1581875}a^{4}+\frac{11}{316375}a^{3}+\frac{9}{63275}a^{2}-\frac{4}{12655}a-\frac{1}{2531}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{55}$, which has order $55$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{56}{39546875} a^{17} + \frac{308549}{39546875} a^{6} \)  (order $22$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1111}{4943359375}a^{19}-\frac{1136}{4943359375}a^{18}+\frac{2556}{4943359375}a^{17}+\frac{9999}{4943359375}a^{16}+\frac{12221}{4943359375}a^{15}+\frac{284}{4943359375}a^{14}+\frac{79236}{4943359375}a^{13}+\frac{309969}{4943359375}a^{12}-\frac{315524}{4943359375}a^{11}+\frac{284}{1953125}a^{10}+\frac{1111}{1953125}a^{9}-\frac{1234321}{988671875}a^{8}+\frac{79236}{39546875}a^{7}+\frac{284}{7909375}a^{6}+\frac{1111}{7909375}a^{5}-\frac{62216}{1581875}a^{4}+\frac{2556}{63275}a^{3}-\frac{1136}{12655}a^{2}-\frac{4444}{12655}a-\frac{1111}{2531}$, $\frac{284}{4943359375}a^{19}+\frac{1111}{4943359375}a^{18}-\frac{2556}{4943359375}a^{17}-\frac{9999}{4943359375}a^{16}+\frac{15904}{4943359375}a^{15}+\frac{62216}{4943359375}a^{14}-\frac{79236}{4943359375}a^{13}-\frac{309969}{4943359375}a^{12}+\frac{315524}{4943359375}a^{11}-\frac{284}{1953125}a^{10}-\frac{1111}{1953125}a^{9}+\frac{80656}{197734375}a^{8}+\frac{315524}{197734375}a^{7}-\frac{284}{7909375}a^{6}-\frac{1111}{7909375}a^{5}-\frac{3124}{316375}a^{4}-\frac{12221}{316375}a^{3}+\frac{1136}{12655}a^{2}+\frac{4444}{12655}a-\frac{1420}{2531}$, $\frac{1}{197734375}a^{18}-\frac{56}{39546875}a^{17}-\frac{1}{63275}a^{13}+\frac{1}{12655}a^{12}-\frac{711704}{197734375}a^{7}+\frac{308549}{39546875}a^{6}+\frac{15679}{63275}a^{2}-\frac{3024}{12655}a$, $\frac{284}{4943359375}a^{19}+\frac{1136}{4943359375}a^{18}+\frac{4444}{4943359375}a^{17}-\frac{3124}{4943359375}a^{16}-\frac{12221}{4943359375}a^{15}+\frac{62216}{4943359375}a^{14}-\frac{79236}{4943359375}a^{13}-\frac{309969}{4943359375}a^{12}+\frac{315524}{4943359375}a^{11}-\frac{284}{1953125}a^{10}-\frac{1111}{1953125}a^{9}+\frac{80656}{197734375}a^{8}-\frac{79236}{39546875}a^{7}-\frac{309969}{39546875}a^{6}+\frac{15904}{1581875}a^{5}+\frac{62216}{1581875}a^{4}-\frac{12221}{316375}a^{3}+\frac{1136}{12655}a^{2}+\frac{4444}{12655}a-\frac{1420}{2531}$, $\frac{2556}{4943359375}a^{19}+\frac{11444}{4943359375}a^{18}+\frac{10526}{4943359375}a^{17}-\frac{47496}{4943359375}a^{16}-\frac{111384}{4943359375}a^{15}-\frac{1136}{4943359375}a^{14}-\frac{4444}{4943359375}a^{13}-\frac{68001}{4943359375}a^{12}+\frac{1262096}{4943359375}a^{11}-\frac{1136}{1953125}a^{10}-\frac{4444}{1953125}a^{9}-\frac{2776441}{988671875}a^{8}-\frac{280649}{197734375}a^{7}+\frac{492081}{39546875}a^{6}+\frac{626629}{7909375}a^{5}+\frac{246069}{1581875}a^{4}-\frac{10224}{63275}a^{3}-\frac{39996}{63275}a^{2}+\frac{8704}{12655}a+\frac{1913}{2531}$, $\frac{6173}{4943359375}a^{19}-\frac{13248}{4943359375}a^{18}-\frac{3692}{4943359375}a^{17}-\frac{6943}{4943359375}a^{16}+\frac{130403}{4943359375}a^{15}-\frac{283188}{4943359375}a^{14}+\frac{396798}{4943359375}a^{13}+\frac{159767}{4943359375}a^{12}-\frac{1753132}{4943359375}a^{11}-\frac{1938}{1953125}a^{10}+\frac{6173}{1953125}a^{9}-\frac{6858203}{988671875}a^{8}+\frac{76989}{7909375}a^{7}+\frac{159324}{7909375}a^{6}-\frac{7802}{7909375}a^{5}-\frac{342893}{1581875}a^{4}+\frac{68462}{316375}a^{3}+\frac{40437}{63275}a^{2}-\frac{12596}{12655}a+\frac{3951}{2531}$, $\frac{1704}{4943359375}a^{19}-\frac{4494}{4943359375}a^{18}+\frac{23999}{4943359375}a^{17}-\frac{9029}{4943359375}a^{16}-\frac{124716}{4943359375}a^{15}+\frac{1111}{4943359375}a^{14}+\frac{466219}{4943359375}a^{13}+\frac{75101}{4943359375}a^{12}-\frac{1234321}{4943359375}a^{11}+\frac{1111}{1953125}a^{10}-\frac{2531}{1953125}a^{9}-\frac{6798222}{988671875}a^{8}+\frac{2973253}{197734375}a^{7}-\frac{611543}{39546875}a^{6}+\frac{158731}{7909375}a^{5}+\frac{11662}{316375}a^{4}+\frac{9999}{63275}a^{3}-\frac{53578}{63275}a^{2}-\frac{8579}{12655}a+\frac{10617}{2531}$, $\frac{334}{4943359375}a^{19}+\frac{6666}{4943359375}a^{18}-\frac{1236}{4943359375}a^{17}+\frac{44656}{4943359375}a^{16}-\frac{52851}{4943359375}a^{15}+\frac{107696}{4943359375}a^{14}-\frac{77816}{4943359375}a^{13}-\frac{695039}{4943359375}a^{12}-\frac{87756}{4943359375}a^{11}-\frac{1679}{1953125}a^{10}+\frac{309}{1953125}a^{9}-\frac{3901819}{988671875}a^{8}-\frac{918797}{197734375}a^{7}+\frac{86211}{39546875}a^{6}-\frac{227609}{7909375}a^{5}+\frac{138368}{1581875}a^{4}+\frac{4517}{316375}a^{3}+\frac{3692}{12655}a^{2}+\frac{4812}{12655}a+\frac{4753}{2531}$, $\frac{5012}{4943359375}a^{19}-\frac{3592}{4943359375}a^{18}-\frac{21568}{4943359375}a^{17}+\frac{81528}{4943359375}a^{16}-\frac{22438}{4943359375}a^{15}-\frac{344577}{4943359375}a^{14}+\frac{550517}{4943359375}a^{13}+\frac{625493}{4943359375}a^{12}-\frac{1034328}{4943359375}a^{11}-\frac{827}{1953125}a^{10}+\frac{3642}{1953125}a^{9}-\frac{1318783}{988671875}a^{8}-\frac{2457736}{197734375}a^{7}+\frac{1324667}{39546875}a^{6}-\frac{28729}{1581875}a^{5}-\frac{206747}{1581875}a^{4}+\frac{117898}{316375}a^{3}-\frac{548}{2531}a^{2}-\frac{11544}{12655}a+\frac{1420}{2531}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8845130.03478 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 8845130.03478 \cdot 55}{22\cdot\sqrt{34088221436915805032899514033281}}\cr\approx \mathstrut & 0.363195737573 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 4*x^18 + 9*x^17 + 11*x^16 - 56*x^15 + x^14 + 279*x^13 - 284*x^12 - 1111*x^11 + 2531*x^10 - 5555*x^9 - 7100*x^8 + 34875*x^7 + 625*x^6 - 175000*x^5 + 171875*x^4 + 703125*x^3 - 1562500*x^2 - 1953125*x + 9765625)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - x^19 - 4*x^18 + 9*x^17 + 11*x^16 - 56*x^15 + x^14 + 279*x^13 - 284*x^12 - 1111*x^11 + 2531*x^10 - 5555*x^9 - 7100*x^8 + 34875*x^7 + 625*x^6 - 175000*x^5 + 171875*x^4 + 703125*x^3 - 1562500*x^2 - 1953125*x + 9765625, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - x^19 - 4*x^18 + 9*x^17 + 11*x^16 - 56*x^15 + x^14 + 279*x^13 - 284*x^12 - 1111*x^11 + 2531*x^10 - 5555*x^9 - 7100*x^8 + 34875*x^7 + 625*x^6 - 175000*x^5 + 171875*x^4 + 703125*x^3 - 1562500*x^2 - 1953125*x + 9765625);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - x^19 - 4*x^18 + 9*x^17 + 11*x^16 - 56*x^15 + x^14 + 279*x^13 - 284*x^12 - 1111*x^11 + 2531*x^10 - 5555*x^9 - 7100*x^8 + 34875*x^7 + 625*x^6 - 175000*x^5 + 171875*x^4 + 703125*x^3 - 1562500*x^2 - 1953125*x + 9765625);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{10}$ (as 20T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{209}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-11}, \sqrt{-19})\), \(\Q(\zeta_{11})^+\), 10.10.5838511919737409.1, \(\Q(\zeta_{11})\), 10.0.530773810885219.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }^{2}$ ${\href{/padicField/3.10.0.1}{10} }^{2}$ ${\href{/padicField/5.5.0.1}{5} }^{4}$ ${\href{/padicField/7.10.0.1}{10} }^{2}$ R ${\href{/padicField/13.10.0.1}{10} }^{2}$ ${\href{/padicField/17.10.0.1}{10} }^{2}$ R ${\href{/padicField/23.1.0.1}{1} }^{20}$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ ${\href{/padicField/31.10.0.1}{10} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{10}$ ${\href{/padicField/47.5.0.1}{5} }^{4}$ ${\href{/padicField/53.10.0.1}{10} }^{2}$ ${\href{/padicField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display 11.10.9.7$x^{10} + 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
\(19\) Copy content Toggle raw display 19.20.10.1$x^{20} + 190 x^{18} + 16245 x^{16} + 36 x^{15} + 823106 x^{14} - 3386 x^{13} + 27361982 x^{12} - 466480 x^{11} + 623608258 x^{10} - 16361762 x^{9} + 9874880623 x^{8} - 202428566 x^{7} + 107361060449 x^{6} + 371628878 x^{5} + 766799662247 x^{4} + 26518316394 x^{3} + 3240176666731 x^{2} + 149940122806 x + 6108844895300$$2$$10$$10$20T3$[\ ]_{2}^{10}$