Normalized defining polynomial
\( x^{20} - x^{19} - 4 x^{18} + 9 x^{17} + 11 x^{16} - 56 x^{15} + x^{14} + 279 x^{13} - 284 x^{12} - 1111 x^{11} + 2531 x^{10} - 5555 x^{9} - 7100 x^{8} + 34875 x^{7} + 625 x^{6} - 175000 x^{5} + 171875 x^{4} + 703125 x^{3} - 1562500 x^{2} - 1953125 x + 9765625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34088221436915805032899514033281=11^{18}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(209=11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{209}(1,·)$, $\chi_{209}(134,·)$, $\chi_{209}(75,·)$, $\chi_{209}(208,·)$, $\chi_{209}(18,·)$, $\chi_{209}(20,·)$, $\chi_{209}(151,·)$, $\chi_{209}(153,·)$, $\chi_{209}(94,·)$, $\chi_{209}(96,·)$, $\chi_{209}(37,·)$, $\chi_{209}(39,·)$, $\chi_{209}(170,·)$, $\chi_{209}(172,·)$, $\chi_{209}(113,·)$, $\chi_{209}(115,·)$, $\chi_{209}(56,·)$, $\chi_{209}(58,·)$, $\chi_{209}(189,·)$, $\chi_{209}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{12655} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1111}{2531}$, $\frac{1}{63275} a^{12} - \frac{1}{63275} a^{11} - \frac{9}{25} a^{10} - \frac{11}{25} a^{9} + \frac{6}{25} a^{8} - \frac{1}{25} a^{7} - \frac{4}{25} a^{6} + \frac{9}{25} a^{5} + \frac{11}{25} a^{4} - \frac{6}{25} a^{3} + \frac{1}{25} a^{2} - \frac{1111}{12655} a - \frac{284}{2531}$, $\frac{1}{316375} a^{13} - \frac{1}{316375} a^{12} - \frac{4}{316375} a^{11} - \frac{36}{125} a^{10} - \frac{44}{125} a^{9} - \frac{26}{125} a^{8} - \frac{4}{125} a^{7} + \frac{9}{125} a^{6} + \frac{11}{125} a^{5} - \frac{56}{125} a^{4} + \frac{1}{125} a^{3} - \frac{1111}{63275} a^{2} - \frac{284}{12655} a + \frac{279}{2531}$, $\frac{1}{1581875} a^{14} - \frac{1}{1581875} a^{13} - \frac{4}{1581875} a^{12} + \frac{9}{1581875} a^{11} + \frac{81}{625} a^{10} + \frac{99}{625} a^{9} + \frac{121}{625} a^{8} + \frac{9}{625} a^{7} + \frac{11}{625} a^{6} - \frac{56}{625} a^{5} + \frac{1}{625} a^{4} - \frac{1111}{316375} a^{3} - \frac{284}{63275} a^{2} + \frac{279}{12655} a + \frac{1}{2531}$, $\frac{1}{7909375} a^{15} - \frac{1}{7909375} a^{14} - \frac{4}{7909375} a^{13} + \frac{9}{7909375} a^{12} + \frac{11}{7909375} a^{11} - \frac{526}{3125} a^{10} + \frac{121}{3125} a^{9} - \frac{616}{3125} a^{8} + \frac{11}{3125} a^{7} - \frac{56}{3125} a^{6} + \frac{1}{3125} a^{5} - \frac{1111}{1581875} a^{4} - \frac{284}{316375} a^{3} + \frac{279}{63275} a^{2} + \frac{1}{12655} a - \frac{56}{2531}$, $\frac{1}{39546875} a^{16} - \frac{1}{39546875} a^{15} - \frac{4}{39546875} a^{14} + \frac{9}{39546875} a^{13} + \frac{11}{39546875} a^{12} - \frac{56}{39546875} a^{11} + \frac{6371}{15625} a^{10} - \frac{3741}{15625} a^{9} + \frac{3136}{15625} a^{8} - \frac{56}{15625} a^{7} + \frac{1}{15625} a^{6} - \frac{1111}{7909375} a^{5} - \frac{284}{1581875} a^{4} + \frac{279}{316375} a^{3} + \frac{1}{63275} a^{2} - \frac{56}{12655} a + \frac{11}{2531}$, $\frac{1}{197734375} a^{17} - \frac{1}{197734375} a^{16} - \frac{4}{197734375} a^{15} + \frac{9}{197734375} a^{14} + \frac{11}{197734375} a^{13} - \frac{56}{197734375} a^{12} + \frac{1}{197734375} a^{11} + \frac{11884}{78125} a^{10} + \frac{34386}{78125} a^{9} - \frac{15681}{78125} a^{8} + \frac{1}{78125} a^{7} - \frac{1111}{39546875} a^{6} - \frac{284}{7909375} a^{5} + \frac{279}{1581875} a^{4} + \frac{1}{316375} a^{3} - \frac{56}{63275} a^{2} + \frac{11}{12655} a + \frac{9}{2531}$, $\frac{1}{988671875} a^{18} - \frac{1}{988671875} a^{17} - \frac{4}{988671875} a^{16} + \frac{9}{988671875} a^{15} + \frac{11}{988671875} a^{14} - \frac{56}{988671875} a^{13} + \frac{1}{988671875} a^{12} + \frac{279}{988671875} a^{11} + \frac{112511}{390625} a^{10} - \frac{171931}{390625} a^{9} + \frac{1}{390625} a^{8} - \frac{1111}{197734375} a^{7} - \frac{284}{39546875} a^{6} + \frac{279}{7909375} a^{5} + \frac{1}{1581875} a^{4} - \frac{56}{316375} a^{3} + \frac{11}{63275} a^{2} + \frac{9}{12655} a - \frac{4}{2531}$, $\frac{1}{4943359375} a^{19} - \frac{1}{4943359375} a^{18} - \frac{4}{4943359375} a^{17} + \frac{9}{4943359375} a^{16} + \frac{11}{4943359375} a^{15} - \frac{56}{4943359375} a^{14} + \frac{1}{4943359375} a^{13} + \frac{279}{4943359375} a^{12} - \frac{284}{4943359375} a^{11} - \frac{562556}{1953125} a^{10} + \frac{1}{1953125} a^{9} - \frac{1111}{988671875} a^{8} - \frac{284}{197734375} a^{7} + \frac{279}{39546875} a^{6} + \frac{1}{7909375} a^{5} - \frac{56}{1581875} a^{4} + \frac{11}{316375} a^{3} + \frac{9}{63275} a^{2} - \frac{4}{12655} a - \frac{1}{2531}$
Class group and class number
$C_{55}$, which has order $55$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{56}{39546875} a^{17} + \frac{308549}{39546875} a^{6} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8845130.03478 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{209}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-11}, \sqrt{-19})\), \(\Q(\zeta_{11})^+\), 10.10.5838511919737409.1, \(\Q(\zeta_{11})\), 10.0.530773810885219.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 19 | Data not computed | ||||||