Show commands:
Magma
magma: G := TransitiveGroup(20, 3);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $3$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2\times C_{10}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $20$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,13,5,17,9,2,14,6,18,10)(3,15,8,20,11,4,16,7,19,12), (1,19,18,16,14,11,9,8,5,3)(2,20,17,15,13,12,10,7,6,4) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $5$: $C_5$ $10$: $C_{10}$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: $C_5$
Degree 10: $C_{10}$ x 3
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)$ |
2B | $2^{10}$ | $1$ | $2$ | $10$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,17)( 8,18)( 9,19)(10,20)$ |
2C | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
5A1 | $5^{4}$ | $1$ | $5$ | $16$ | $( 1, 5, 9,14,18)( 2, 6,10,13,17)( 3, 8,11,16,19)( 4, 7,12,15,20)$ |
5A-1 | $5^{4}$ | $1$ | $5$ | $16$ | $( 1,18,14, 9, 5)( 2,17,13,10, 6)( 3,19,16,11, 8)( 4,20,15,12, 7)$ |
5A2 | $5^{4}$ | $1$ | $5$ | $16$ | $( 1, 9,18, 5,14)( 2,10,17, 6,13)( 3,11,19, 8,16)( 4,12,20, 7,15)$ |
5A-2 | $5^{4}$ | $1$ | $5$ | $16$ | $( 1,14, 5,18, 9)( 2,13, 6,17,10)( 3,16, 8,19,11)( 4,15, 7,20,12)$ |
10A1 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1, 3, 5, 8, 9,11,14,16,18,19)( 2, 4, 6, 7,10,12,13,15,17,20)$ |
10A-1 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1,10,18, 6,14, 2, 9,17, 5,13)( 3,12,19, 7,16, 4,11,20, 8,15)$ |
10A3 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1,17,14,10, 5, 2,18,13, 9, 6)( 3,20,16,12, 8, 4,19,15,11, 7)$ |
10A-3 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1, 7,14,20, 5,12,18, 4, 9,15)( 2, 8,13,19, 6,11,17, 3,10,16)$ |
10B1 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1, 6, 9,13,18, 2, 5,10,14,17)( 3, 7,11,15,19, 4, 8,12,16,20)$ |
10B-1 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1,15, 9, 4,18,12, 5,20,14, 7)( 2,16,10, 3,17,11, 6,19,13, 8)$ |
10B3 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1,13, 5,17, 9, 2,14, 6,18,10)( 3,15, 8,20,11, 4,16, 7,19,12)$ |
10B-3 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1,19,18,16,14,11, 9, 8, 5, 3)( 2,20,17,15,13,12,10, 7, 6, 4)$ |
10C1 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1, 8,14,19, 5,11,18, 3, 9,16)( 2, 7,13,20, 6,12,17, 4,10,15)$ |
10C-1 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1,20,18,15,14,12, 9, 7, 5, 4)( 2,19,17,16,13,11,10, 8, 6, 3)$ |
10C3 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1, 4, 5, 7, 9,12,14,15,18,20)( 2, 3, 6, 8,10,11,13,16,17,19)$ |
10C-3 | $10^{2}$ | $1$ | $10$ | $18$ | $( 1,16, 9, 3,18,11, 5,19,14, 8)( 2,15,10, 4,17,12, 6,20,13, 7)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $20=2^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $1$ | ||
Label: | 20.5 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 10B1 | 10B-1 | 10B3 | 10B-3 | 10C1 | 10C-1 | 10C3 | 10C-3 | ||
Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2 P | 1A | 1A | 1A | 1A | 5A2 | 5A-2 | 5A-1 | 5A1 | 5A1 | 5A-1 | 5A-2 | 5A-2 | 5A2 | 5A2 | 5A1 | 5A-1 | 5A-2 | 5A-1 | 5A1 | 5A2 | |
5 P | 1A | 2B | 2C | 2A | 1A | 1A | 1A | 1A | 2C | 2A | 2A | 2B | 2A | 2B | 2A | 2C | 2C | 2B | 2B | 2C | |
Type | |||||||||||||||||||||
20.5.1a | R | ||||||||||||||||||||
20.5.1b | R | ||||||||||||||||||||
20.5.1c | R | ||||||||||||||||||||
20.5.1d | R | ||||||||||||||||||||
20.5.1e1 | C | ||||||||||||||||||||
20.5.1e2 | C | ||||||||||||||||||||
20.5.1e3 | C | ||||||||||||||||||||
20.5.1e4 | C | ||||||||||||||||||||
20.5.1f1 | C | ||||||||||||||||||||
20.5.1f2 | C | ||||||||||||||||||||
20.5.1f3 | C | ||||||||||||||||||||
20.5.1f4 | C | ||||||||||||||||||||
20.5.1g1 | C | ||||||||||||||||||||
20.5.1g2 | C | ||||||||||||||||||||
20.5.1g3 | C | ||||||||||||||||||||
20.5.1g4 | C | ||||||||||||||||||||
20.5.1h1 | C | ||||||||||||||||||||
20.5.1h2 | C | ||||||||||||||||||||
20.5.1h3 | C | ||||||||||||||||||||
20.5.1h4 | C |
magma: CharacterTable(G);