Normalized defining polynomial
\( x^{18} - 54 x^{16} + 1203 x^{14} - 14349 x^{12} + 99573 x^{10} - 409398 x^{8} + 972425 x^{6} + \cdots - 142129 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[18, 0]$ |
| |
| Discriminant: |
\(40971612301023960236709043943768064\)
\(\medspace = 2^{18}\cdot 3^{18}\cdot 7^{14}\cdot 29^{6}\)
|
| |
| Root discriminant: | \(83.74\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7}a^{10}+\frac{1}{7}a^{8}+\frac{2}{7}a^{6}-\frac{1}{7}a^{4}+\frac{1}{7}a^{2}+\frac{3}{7}$, $\frac{1}{7}a^{11}+\frac{1}{7}a^{9}+\frac{2}{7}a^{7}-\frac{1}{7}a^{5}+\frac{1}{7}a^{3}+\frac{3}{7}a$, $\frac{1}{7}a^{12}+\frac{1}{7}a^{8}-\frac{3}{7}a^{6}+\frac{2}{7}a^{4}+\frac{2}{7}a^{2}-\frac{3}{7}$, $\frac{1}{7}a^{13}+\frac{1}{7}a^{9}-\frac{3}{7}a^{7}+\frac{2}{7}a^{5}+\frac{2}{7}a^{3}-\frac{3}{7}a$, $\frac{1}{49}a^{14}-\frac{2}{49}a^{12}+\frac{3}{49}a^{10}+\frac{4}{49}a^{8}+\frac{12}{49}a^{6}+\frac{10}{49}a^{4}-\frac{19}{49}a^{2}+\frac{12}{49}$, $\frac{1}{637}a^{15}-\frac{9}{637}a^{13}+\frac{31}{637}a^{11}-\frac{318}{637}a^{9}-\frac{303}{637}a^{7}-\frac{10}{49}a^{5}+\frac{142}{637}a^{3}+\frac{313}{637}a$, $\frac{1}{25521375237449}a^{16}-\frac{257375523765}{25521375237449}a^{14}-\frac{707060902543}{25521375237449}a^{12}-\frac{428832799674}{25521375237449}a^{10}+\frac{6958956030321}{25521375237449}a^{8}-\frac{845146040667}{1963182710573}a^{6}+\frac{2863113830303}{25521375237449}a^{4}-\frac{10994195392478}{25521375237449}a^{2}-\frac{23744692918}{67695955537}$, $\frac{1}{25521375237449}a^{17}-\frac{16985804103}{25521375237449}a^{15}+\frac{775342368706}{25521375237449}a^{13}-\frac{268572986566}{25521375237449}a^{11}+\frac{3433240141945}{25521375237449}a^{9}-\frac{7260857873910}{25521375237449}a^{7}+\frac{11717468504520}{25521375237449}a^{5}-\frac{183094649071}{1963182710573}a^{3}+\frac{39190448536}{125721060283}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{9887277}{1963182710573}a^{16}-\frac{581494302}{1963182710573}a^{14}+\frac{2104600301}{280454672939}a^{12}-\frac{210432684093}{1963182710573}a^{10}+\frac{1838839360530}{1963182710573}a^{8}-\frac{1398115208780}{280454672939}a^{6}+\frac{29090434483260}{1963182710573}a^{4}-\frac{39064728851553}{1963182710573}a^{2}+\frac{474191072947}{67695955537}$, $\frac{17897937}{280454672939}a^{16}-\frac{6711270081}{1963182710573}a^{14}+\frac{146767812208}{1963182710573}a^{12}-\frac{1687042198647}{1963182710573}a^{10}+\frac{10926360512670}{1963182710573}a^{8}-\frac{39660429061551}{1963182710573}a^{6}+\frac{75287037819888}{1963182710573}a^{4}-\frac{62992316951175}{1963182710573}a^{2}+\frac{553728421830}{67695955537}$, $\frac{9179273333}{25521375237449}a^{16}-\frac{67408820160}{3645910748207}a^{14}+\frac{9817375288155}{25521375237449}a^{12}-\frac{106246989406638}{25521375237449}a^{10}+\frac{639658943988639}{25521375237449}a^{8}-\frac{163476035898190}{1963182710573}a^{6}+\frac{36\cdots 04}{25521375237449}a^{4}-\frac{27\cdots 88}{25521375237449}a^{2}+\frac{1555748856413}{67695955537}$, $\frac{184610030}{3645910748207}a^{16}-\frac{9436781209}{3645910748207}a^{14}+\frac{190163850015}{3645910748207}a^{12}-\frac{273036289818}{520844392601}a^{10}+\frac{9968364551507}{3645910748207}a^{8}-\frac{1930268729159}{280454672939}a^{6}+\frac{21082771372981}{3645910748207}a^{4}+\frac{13638902348325}{3645910748207}a^{2}-\frac{42554092843}{9670850791}$, $\frac{2359864397}{25521375237449}a^{16}-\frac{126664661303}{25521375237449}a^{14}+\frac{2810060041083}{25521375237449}a^{12}-\frac{33448803593767}{25521375237449}a^{10}+\frac{231845040569036}{25521375237449}a^{8}-\frac{72891102798718}{1963182710573}a^{6}+\frac{21\cdots 86}{25521375237449}a^{4}-\frac{25\cdots 54}{25521375237449}a^{2}+\frac{2674560016651}{67695955537}$, $\frac{3856836483}{25521375237449}a^{16}-\frac{205692433169}{25521375237449}a^{14}+\frac{4500768731671}{25521375237449}a^{12}-\frac{52112318624935}{25521375237449}a^{10}+\frac{342227734803333}{25521375237449}a^{8}-\frac{96916372011013}{1963182710573}a^{6}+\frac{23\cdots 81}{25521375237449}a^{4}-\frac{17\cdots 32}{25521375237449}a^{2}+\frac{22537679777}{1381550113}$, $\frac{4086793917}{25521375237449}a^{16}-\frac{187543140195}{25521375237449}a^{14}+\frac{68860949663}{520844392601}a^{12}-\frac{30220934956512}{25521375237449}a^{10}+\frac{141577389648651}{25521375237449}a^{8}-\frac{527295008939}{40064953277}a^{6}+\frac{362555973655696}{25521375237449}a^{4}-\frac{148495244189723}{25521375237449}a^{2}+\frac{12826311724}{67695955537}$, $\frac{13302285288}{25521375237449}a^{16}-\frac{688223856023}{25521375237449}a^{14}+\frac{14451869266215}{25521375237449}a^{12}-\frac{158588167768391}{25521375237449}a^{10}+\frac{139359998029321}{3645910748207}a^{8}-\frac{257687727227472}{1963182710573}a^{6}+\frac{857443498577810}{3645910748207}a^{4}-\frac{47\cdots 60}{25521375237449}a^{2}+\frac{3522824571166}{67695955537}$, $\frac{9670603623}{25521375237449}a^{17}-\frac{11070955492}{25521375237449}a^{16}-\frac{38563184822}{1963182710573}a^{15}+\frac{569118620646}{25521375237449}a^{14}+\frac{10536024676642}{25521375237449}a^{13}-\frac{11833327852523}{25521375237449}a^{12}-\frac{8875437501835}{1963182710573}a^{11}+\frac{18267855581119}{3645910748207}a^{10}+\frac{703604632579130}{25521375237449}a^{9}-\frac{767579857323101}{25521375237449}a^{8}-\frac{23\cdots 66}{25521375237449}a^{7}+\frac{194583430890214}{1963182710573}a^{6}+\frac{40\cdots 11}{25521375237449}a^{5}-\frac{41\cdots 64}{25521375237449}a^{4}-\frac{28\cdots 86}{25521375237449}a^{3}+\frac{57195601897555}{520844392601}a^{2}+\frac{22173559772613}{880047421981}a-\frac{1525543494073}{67695955537}$, $\frac{27288360}{25521375237449}a^{17}+\frac{13584466015}{25521375237449}a^{16}-\frac{7464359366}{25521375237449}a^{15}-\frac{682207650827}{25521375237449}a^{14}+\frac{313838059944}{25521375237449}a^{13}+\frac{13789342069921}{25521375237449}a^{12}-\frac{5558142007827}{25521375237449}a^{11}-\frac{143995312874860}{25521375237449}a^{10}+\frac{49856137096421}{25521375237449}a^{9}+\frac{829878345020908}{25521375237449}a^{8}-\frac{234248667773411}{25521375237449}a^{7}-\frac{201345410467584}{1963182710573}a^{6}+\frac{553229716244340}{25521375237449}a^{5}+\frac{42\cdots 14}{25521375237449}a^{4}-\frac{589458649299081}{25521375237449}a^{3}-\frac{29\cdots 08}{25521375237449}a^{2}+\frac{116571882043}{17960151469}a+\frac{1716567414735}{67695955537}$, $\frac{3295635828}{25521375237449}a^{17}-\frac{1829247542}{25521375237449}a^{16}-\frac{170163630947}{25521375237449}a^{15}+\frac{89091233419}{25521375237449}a^{14}+\frac{3570291479225}{25521375237449}a^{13}-\frac{1731003073851}{25521375237449}a^{12}-\frac{5607515669619}{3645910748207}a^{11}+\frac{17066658936539}{25521375237449}a^{10}+\frac{243223552371153}{25521375237449}a^{9}-\frac{89008999172346}{25521375237449}a^{8}-\frac{849732582646190}{25521375237449}a^{7}+\frac{17331696347275}{1963182710573}a^{6}+\frac{15\cdots 84}{25521375237449}a^{5}-\frac{177106223693524}{25521375237449}a^{4}-\frac{26420420232082}{520844392601}a^{3}-\frac{127513292296083}{25521375237449}a^{2}+\frac{9691444367713}{880047421981}a+\frac{15299990865}{9670850791}$, $\frac{3322924188}{25521375237449}a^{17}-\frac{2490527562}{25521375237449}a^{16}-\frac{177627990313}{25521375237449}a^{15}+\frac{130277508258}{25521375237449}a^{14}+\frac{3884129539169}{25521375237449}a^{13}-\frac{2762812090807}{25521375237449}a^{12}-\frac{44810751695160}{25521375237449}a^{11}+\frac{30486958462966}{25521375237449}a^{10}+\frac{293079689467574}{25521375237449}a^{9}-\frac{186490710103881}{25521375237449}a^{8}-\frac{10\cdots 01}{25521375237449}a^{7}+\frac{47765765178424}{1963182710573}a^{6}+\frac{21\cdots 24}{25521375237449}a^{5}-\frac{10\cdots 59}{25521375237449}a^{4}-\frac{18\cdots 99}{25521375237449}a^{3}+\frac{723426881796746}{25521375237449}a^{2}+\frac{15403466587820}{880047421981}a-\frac{450866157765}{67695955537}$, $\frac{373815783}{3645910748207}a^{17}-\frac{571345289}{3645910748207}a^{16}-\frac{127204037985}{25521375237449}a^{15}+\frac{193227937822}{25521375237449}a^{14}+\frac{2449151201664}{25521375237449}a^{13}-\frac{3657123116940}{25521375237449}a^{12}-\frac{23775772779957}{25521375237449}a^{11}+\frac{34213536942986}{25521375237449}a^{10}+\frac{122954200699374}{25521375237449}a^{9}-\frac{164141784703101}{25521375237449}a^{8}-\frac{333214165050803}{25521375237449}a^{7}+\frac{29304470440713}{1963182710573}a^{6}+\frac{452669700528505}{25521375237449}a^{5}-\frac{368341074873014}{25521375237449}a^{4}-\frac{299217150678564}{25521375237449}a^{3}+\frac{107411277291548}{25521375237449}a^{2}+\frac{2750803039130}{880047421981}a+\frac{12140064726}{67695955537}$, $\frac{1198397895}{25521375237449}a^{17}-\frac{3500654839}{25521375237449}a^{16}-\frac{69910030956}{25521375237449}a^{15}+\frac{163020140051}{25521375237449}a^{14}+\frac{1674202450183}{25521375237449}a^{13}-\frac{2976609136167}{25521375237449}a^{12}-\frac{21254275114236}{25521375237449}a^{11}+\frac{26878949922757}{25521375237449}a^{10}+\frac{22054976715831}{3645910748207}a^{9}-\frac{122896342080345}{25521375237449}a^{8}-\frac{647603074569853}{25521375237449}a^{7}+\frac{18805768767907}{1963182710573}a^{6}+\frac{30853122569089}{520844392601}a^{5}-\frac{29654296773576}{25521375237449}a^{4}-\frac{17\cdots 70}{25521375237449}a^{3}-\frac{454137143596935}{25521375237449}a^{2}+\frac{27653358383782}{880047421981}a+\frac{136000916549}{9670850791}$, $\frac{85846374}{520844392601}a^{17}-\frac{1694956804}{25521375237449}a^{16}-\frac{208993872179}{25521375237449}a^{15}+\frac{54919210886}{25521375237449}a^{14}+\frac{4180305975421}{25521375237449}a^{13}-\frac{53822039533}{3645910748207}a^{12}-\frac{43316029013834}{25521375237449}a^{11}-\frac{5164081011379}{25521375237449}a^{10}+\frac{249449497299348}{25521375237449}a^{9}+\frac{90732314793581}{25521375237449}a^{8}-\frac{794553699111975}{25521375237449}a^{7}-\frac{5513224211273}{280454672939}a^{6}+\frac{12\cdots 93}{25521375237449}a^{5}+\frac{11\cdots 14}{25521375237449}a^{4}-\frac{870644086164806}{25521375237449}a^{3}-\frac{10\cdots 54}{25521375237449}a^{2}+\frac{5777545761003}{880047421981}a+\frac{776579305139}{67695955537}$, $\frac{19372809730}{25521375237449}a^{17}+\frac{538580326}{1963182710573}a^{16}-\frac{995573675956}{25521375237449}a^{15}-\frac{22849000138}{1963182710573}a^{14}+\frac{20798731353901}{25521375237449}a^{13}+\frac{346043492621}{1963182710573}a^{12}-\frac{228099017042023}{25521375237449}a^{11}-\frac{1930870577152}{1963182710573}a^{10}+\frac{14\cdots 86}{25521375237449}a^{9}-\frac{375457725053}{280454672939}a^{8}-\frac{50\cdots 11}{25521375237449}a^{7}+\frac{70731246448528}{1963182710573}a^{6}+\frac{97\cdots 98}{25521375237449}a^{5}-\frac{37107626909516}{280454672939}a^{4}-\frac{89\cdots 16}{25521375237449}a^{3}+\frac{329010082481342}{1963182710573}a^{2}+\frac{82030696351290}{880047421981}a-\frac{3143558033074}{67695955537}$, $\frac{233777318}{1963182710573}a^{17}+\frac{18946814308}{25521375237449}a^{16}-\frac{157347725211}{25521375237449}a^{15}-\frac{137757129059}{3645910748207}a^{14}+\frac{3319514633639}{25521375237449}a^{13}+\frac{19793561395963}{25521375237449}a^{12}-\frac{36896299241937}{25521375237449}a^{11}-\frac{210138493823021}{25521375237449}a^{10}+\frac{233920890445157}{25521375237449}a^{9}+\frac{12\cdots 39}{25521375237449}a^{8}-\frac{860218848200305}{25521375237449}a^{7}-\frac{299071614384730}{1963182710573}a^{6}+\frac{137887823524324}{1963182710573}a^{5}+\frac{60\cdots 21}{25521375237449}a^{4}-\frac{19\cdots 68}{25521375237449}a^{3}-\frac{38\cdots 86}{25521375237449}a^{2}+\frac{21221873285097}{880047421981}a+\frac{2190796975004}{67695955537}$
|
| |
| Regulator: | \( 458673138470 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 458673138470 \cdot 1}{2\cdot\sqrt{40971612301023960236709043943768064}}\cr\approx \mathstrut & 0.297010433795579 \end{aligned}\] (assuming GRH)
Galois group
$A_4^3:(C_2\times A_4)$ (as 18T701):
| A solvable group of order 41472 |
| The 72 conjugacy class representatives for $A_4^3:(C_2\times A_4)$ |
| Character table for $A_4^3:(C_2\times A_4)$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.9.0.1}{9} }^{2}$ | R | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.9.0.1}{9} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ | R | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.9.0.1}{9} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{6}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a2.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 3 x^{2} + 4 x + 7$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $$[2, 2, 2]^{3}$$ |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(3\)
| 3.3.3.9a8.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 15 x^{5} + 12 x^{4} + 20 x^{3} + 15 x^{2} + 12 x + 7$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{3}$$ |
| 3.3.3.9a8.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 15 x^{5} + 12 x^{4} + 20 x^{3} + 15 x^{2} + 12 x + 7$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{3}$$ | |
|
\(7\)
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 7.2.6.10a1.2 | $x^{12} + 36 x^{11} + 558 x^{10} + 4860 x^{9} + 26055 x^{8} + 88776 x^{7} + 192996 x^{6} + 266328 x^{5} + 234495 x^{4} + 131220 x^{3} + 45198 x^{2} + 8748 x + 736$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $$[\ ]_{6}^{2}$$ | |
|
\(29\)
| 29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.3.4a1.2 | $x^{6} + 72 x^{5} + 1734 x^{4} + 14112 x^{3} + 3468 x^{2} + 288 x + 37$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |