Normalized defining polynomial
\( x^{18} - 3 x^{17} - 57 x^{16} + 114 x^{15} + 1281 x^{14} - 1467 x^{13} - 14285 x^{12} + 6657 x^{11} + \cdots - 5725 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[18, 0]$ |
| |
| Discriminant: |
\(176938682194265948289288000000000\)
\(\medspace = 2^{12}\cdot 3^{24}\cdot 5^{9}\cdot 23^{8}\)
|
| |
| Root discriminant: | \(61.88\) |
| |
| Galois root discriminant: | $2^{2/3}3^{4/3}5^{1/2}23^{2/3}\approx 124.20866564536522$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(23\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_6$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5}a^{10}-\frac{2}{5}a^{6}+\frac{1}{5}a^{2}$, $\frac{1}{5}a^{11}-\frac{2}{5}a^{7}+\frac{1}{5}a^{3}$, $\frac{1}{5}a^{12}-\frac{2}{5}a^{8}+\frac{1}{5}a^{4}$, $\frac{1}{5}a^{13}-\frac{2}{5}a^{9}+\frac{1}{5}a^{5}$, $\frac{1}{25}a^{14}-\frac{1}{25}a^{13}-\frac{1}{25}a^{12}-\frac{1}{25}a^{11}+\frac{1}{25}a^{10}+\frac{12}{25}a^{9}-\frac{8}{25}a^{8}+\frac{12}{25}a^{7}+\frac{2}{5}a^{6}-\frac{11}{25}a^{5}-\frac{11}{25}a^{4}+\frac{9}{25}a^{3}+\frac{8}{25}a^{2}-\frac{1}{5}a-\frac{2}{5}$, $\frac{1}{425}a^{15}+\frac{1}{85}a^{14}-\frac{2}{425}a^{13}-\frac{37}{425}a^{12}-\frac{2}{85}a^{11}+\frac{18}{425}a^{10}-\frac{146}{425}a^{9}+\frac{124}{425}a^{8}-\frac{33}{425}a^{7}-\frac{1}{425}a^{6}+\frac{78}{425}a^{5}+\frac{63}{425}a^{4}+\frac{82}{425}a^{3}+\frac{18}{425}a^{2}-\frac{3}{85}a+\frac{33}{85}$, $\frac{1}{19975}a^{16}+\frac{2}{3995}a^{15}-\frac{62}{19975}a^{14}+\frac{1483}{19975}a^{13}-\frac{277}{3995}a^{12}+\frac{988}{19975}a^{11}-\frac{821}{19975}a^{10}+\frac{3134}{19975}a^{9}-\frac{1708}{19975}a^{8}+\frac{5019}{19975}a^{7}-\frac{2392}{19975}a^{6}-\frac{4392}{19975}a^{5}+\frac{5582}{19975}a^{4}-\frac{2802}{19975}a^{3}-\frac{2}{3995}a^{2}-\frac{1002}{3995}a-\frac{1}{799}$, $\frac{1}{60\cdots 75}a^{17}-\frac{10\cdots 42}{12\cdots 15}a^{16}+\frac{81\cdots 28}{70\cdots 95}a^{15}+\frac{13\cdots 74}{60\cdots 75}a^{14}+\frac{13\cdots 67}{24\cdots 43}a^{13}+\frac{13\cdots 08}{60\cdots 75}a^{12}-\frac{36\cdots 77}{60\cdots 75}a^{11}+\frac{54\cdots 66}{60\cdots 75}a^{10}-\frac{62\cdots 68}{60\cdots 75}a^{9}+\frac{22\cdots 54}{60\cdots 75}a^{8}-\frac{74\cdots 71}{60\cdots 75}a^{7}-\frac{19\cdots 14}{60\cdots 75}a^{6}-\frac{15\cdots 74}{35\cdots 75}a^{5}-\frac{19\cdots 82}{60\cdots 75}a^{4}-\frac{11\cdots 17}{60\cdots 75}a^{3}-\frac{16\cdots 61}{60\cdots 75}a^{2}+\frac{14\cdots 68}{12\cdots 15}a+\frac{28\cdots 04}{12\cdots 15}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $5$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{19\cdots 38}{75\cdots 25}a^{17}-\frac{15\cdots 99}{12\cdots 25}a^{16}-\frac{17\cdots 08}{12\cdots 25}a^{15}+\frac{63\cdots 42}{12\cdots 25}a^{14}+\frac{34\cdots 14}{12\cdots 25}a^{13}-\frac{98\cdots 96}{12\cdots 25}a^{12}-\frac{33\cdots 54}{12\cdots 25}a^{11}+\frac{70\cdots 86}{12\cdots 25}a^{10}+\frac{17\cdots 44}{12\cdots 25}a^{9}-\frac{23\cdots 71}{12\cdots 25}a^{8}-\frac{47\cdots 78}{12\cdots 25}a^{7}+\frac{35\cdots 72}{12\cdots 25}a^{6}+\frac{62\cdots 06}{12\cdots 25}a^{5}-\frac{20\cdots 99}{12\cdots 25}a^{4}-\frac{12\cdots 46}{51\cdots 69}a^{3}+\frac{11\cdots 82}{25\cdots 45}a^{2}+\frac{92\cdots 10}{30\cdots 57}a-\frac{26\cdots 87}{51\cdots 69}$, $\frac{20\cdots 36}{12\cdots 15}a^{17}-\frac{39\cdots 97}{60\cdots 75}a^{16}-\frac{21\cdots 32}{24\cdots 43}a^{15}+\frac{16\cdots 68}{60\cdots 75}a^{14}+\frac{22\cdots 78}{12\cdots 15}a^{13}-\frac{25\cdots 09}{60\cdots 75}a^{12}-\frac{47\cdots 44}{24\cdots 43}a^{11}+\frac{18\cdots 21}{60\cdots 75}a^{10}+\frac{13\cdots 64}{12\cdots 15}a^{9}-\frac{61\cdots 06}{60\cdots 75}a^{8}-\frac{37\cdots 72}{12\cdots 15}a^{7}+\frac{98\cdots 29}{60\cdots 75}a^{6}+\frac{52\cdots 02}{12\cdots 15}a^{5}-\frac{41\cdots 94}{35\cdots 75}a^{4}-\frac{28\cdots 38}{12\cdots 15}a^{3}+\frac{33\cdots 32}{60\cdots 75}a^{2}+\frac{86\cdots 69}{24\cdots 43}a-\frac{11\cdots 63}{12\cdots 15}$, $\frac{20\cdots 36}{12\cdots 15}a^{17}-\frac{39\cdots 97}{60\cdots 75}a^{16}-\frac{21\cdots 32}{24\cdots 43}a^{15}+\frac{16\cdots 68}{60\cdots 75}a^{14}+\frac{22\cdots 78}{12\cdots 15}a^{13}-\frac{25\cdots 09}{60\cdots 75}a^{12}-\frac{47\cdots 44}{24\cdots 43}a^{11}+\frac{18\cdots 21}{60\cdots 75}a^{10}+\frac{13\cdots 64}{12\cdots 15}a^{9}-\frac{61\cdots 06}{60\cdots 75}a^{8}-\frac{37\cdots 72}{12\cdots 15}a^{7}+\frac{98\cdots 29}{60\cdots 75}a^{6}+\frac{52\cdots 02}{12\cdots 15}a^{5}-\frac{41\cdots 94}{35\cdots 75}a^{4}-\frac{28\cdots 38}{12\cdots 15}a^{3}+\frac{33\cdots 32}{60\cdots 75}a^{2}+\frac{86\cdots 69}{24\cdots 43}a-\frac{11\cdots 48}{12\cdots 15}$, $\frac{64\cdots 83}{60\cdots 75}a^{17}-\frac{27\cdots 93}{60\cdots 75}a^{16}-\frac{33\cdots 93}{60\cdots 75}a^{15}+\frac{22\cdots 53}{12\cdots 15}a^{14}+\frac{13\cdots 59}{12\cdots 15}a^{13}-\frac{17\cdots 37}{60\cdots 75}a^{12}-\frac{69\cdots 97}{60\cdots 75}a^{11}+\frac{12\cdots 14}{60\cdots 75}a^{10}+\frac{37\cdots 36}{60\cdots 75}a^{9}-\frac{42\cdots 97}{60\cdots 75}a^{8}-\frac{10\cdots 62}{60\cdots 75}a^{7}+\frac{66\cdots 12}{60\cdots 75}a^{6}+\frac{14\cdots 21}{60\cdots 75}a^{5}-\frac{47\cdots 23}{60\cdots 75}a^{4}-\frac{76\cdots 78}{60\cdots 75}a^{3}+\frac{19\cdots 54}{60\cdots 75}a^{2}+\frac{22\cdots 77}{12\cdots 15}a-\frac{59\cdots 01}{12\cdots 15}$, $\frac{18\cdots 89}{60\cdots 75}a^{17}-\frac{77\cdots 17}{60\cdots 75}a^{16}-\frac{19\cdots 77}{12\cdots 15}a^{15}+\frac{64\cdots 63}{12\cdots 15}a^{14}+\frac{20\cdots 64}{60\cdots 75}a^{13}-\frac{50\cdots 98}{60\cdots 75}a^{12}-\frac{21\cdots 59}{60\cdots 75}a^{11}+\frac{35\cdots 21}{60\cdots 75}a^{10}+\frac{23\cdots 29}{12\cdots 15}a^{9}-\frac{12\cdots 18}{60\cdots 75}a^{8}-\frac{32\cdots 67}{60\cdots 75}a^{7}+\frac{19\cdots 88}{60\cdots 75}a^{6}+\frac{45\cdots 77}{60\cdots 75}a^{5}-\frac{14\cdots 17}{60\cdots 75}a^{4}-\frac{24\cdots 09}{60\cdots 75}a^{3}+\frac{61\cdots 81}{60\cdots 75}a^{2}+\frac{72\cdots 11}{12\cdots 15}a-\frac{19\cdots 19}{12\cdots 15}$, $\frac{12\cdots 24}{60\cdots 75}a^{17}-\frac{50\cdots 59}{60\cdots 75}a^{16}-\frac{62\cdots 08}{60\cdots 75}a^{15}+\frac{21\cdots 39}{60\cdots 75}a^{14}+\frac{12\cdots 19}{60\cdots 75}a^{13}-\frac{32\cdots 27}{60\cdots 75}a^{12}-\frac{26\cdots 51}{12\cdots 15}a^{11}+\frac{23\cdots 89}{60\cdots 75}a^{10}+\frac{14\cdots 96}{12\cdots 15}a^{9}-\frac{81\cdots 84}{60\cdots 75}a^{8}-\frac{20\cdots 31}{60\cdots 75}a^{7}+\frac{26\cdots 24}{12\cdots 15}a^{6}+\frac{28\cdots 37}{60\cdots 75}a^{5}-\frac{19\cdots 77}{12\cdots 15}a^{4}-\frac{15\cdots 01}{60\cdots 75}a^{3}+\frac{43\cdots 32}{60\cdots 75}a^{2}+\frac{46\cdots 39}{12\cdots 15}a-\frac{13\cdots 28}{12\cdots 15}$, $\frac{30\cdots 84}{35\cdots 75}a^{17}-\frac{21\cdots 56}{60\cdots 75}a^{16}-\frac{55\cdots 57}{12\cdots 15}a^{15}+\frac{90\cdots 93}{60\cdots 75}a^{14}+\frac{57\cdots 33}{60\cdots 75}a^{13}-\frac{28\cdots 82}{12\cdots 15}a^{12}-\frac{59\cdots 78}{60\cdots 75}a^{11}+\frac{10\cdots 48}{60\cdots 75}a^{10}+\frac{64\cdots 84}{12\cdots 15}a^{9}-\frac{34\cdots 82}{60\cdots 75}a^{8}-\frac{53\cdots 87}{35\cdots 75}a^{7}+\frac{22\cdots 92}{24\cdots 43}a^{6}+\frac{12\cdots 44}{60\cdots 75}a^{5}-\frac{40\cdots 12}{60\cdots 75}a^{4}-\frac{67\cdots 73}{60\cdots 75}a^{3}+\frac{17\cdots 19}{60\cdots 75}a^{2}+\frac{20\cdots 12}{12\cdots 15}a-\frac{53\cdots 61}{12\cdots 15}$, $\frac{42\cdots 87}{35\cdots 75}a^{17}-\frac{27\cdots 46}{60\cdots 75}a^{16}-\frac{23\cdots 84}{35\cdots 75}a^{15}+\frac{11\cdots 54}{60\cdots 75}a^{14}+\frac{85\cdots 77}{60\cdots 75}a^{13}-\frac{17\cdots 73}{60\cdots 75}a^{12}-\frac{53\cdots 01}{35\cdots 75}a^{11}+\frac{12\cdots 67}{60\cdots 75}a^{10}+\frac{51\cdots 34}{60\cdots 75}a^{9}-\frac{44\cdots 16}{60\cdots 75}a^{8}-\frac{15\cdots 87}{60\cdots 75}a^{7}+\frac{74\cdots 74}{60\cdots 75}a^{6}+\frac{42\cdots 99}{12\cdots 15}a^{5}-\frac{12\cdots 59}{12\cdots 15}a^{4}-\frac{12\cdots 48}{60\cdots 75}a^{3}+\frac{12\cdots 45}{24\cdots 43}a^{2}+\frac{37\cdots 17}{12\cdots 15}a-\frac{20\cdots 96}{24\cdots 43}$, $\frac{22\cdots 57}{60\cdots 75}a^{17}-\frac{91\cdots 03}{60\cdots 75}a^{16}-\frac{11\cdots 01}{60\cdots 75}a^{15}+\frac{45\cdots 37}{70\cdots 95}a^{14}+\frac{24\cdots 02}{60\cdots 75}a^{13}-\frac{59\cdots 63}{60\cdots 75}a^{12}-\frac{25\cdots 34}{60\cdots 75}a^{11}+\frac{42\cdots 18}{60\cdots 75}a^{10}+\frac{27\cdots 56}{12\cdots 15}a^{9}-\frac{29\cdots 84}{12\cdots 15}a^{8}-\frac{38\cdots 89}{60\cdots 75}a^{7}+\frac{23\cdots 84}{60\cdots 75}a^{6}+\frac{52\cdots 06}{60\cdots 75}a^{5}-\frac{17\cdots 14}{60\cdots 75}a^{4}-\frac{28\cdots 36}{60\cdots 75}a^{3}+\frac{74\cdots 18}{60\cdots 75}a^{2}+\frac{84\cdots 44}{12\cdots 15}a-\frac{23\cdots 27}{12\cdots 15}$, $\frac{10\cdots 97}{60\cdots 75}a^{17}-\frac{42\cdots 71}{60\cdots 75}a^{16}-\frac{56\cdots 57}{60\cdots 75}a^{15}+\frac{35\cdots 66}{12\cdots 15}a^{14}+\frac{11\cdots 16}{60\cdots 75}a^{13}-\frac{11\cdots 34}{25\cdots 45}a^{12}-\frac{12\cdots 22}{60\cdots 75}a^{11}+\frac{19\cdots 17}{60\cdots 75}a^{10}+\frac{68\cdots 22}{60\cdots 75}a^{9}-\frac{68\cdots 02}{60\cdots 75}a^{8}-\frac{39\cdots 26}{12\cdots 15}a^{7}+\frac{10\cdots 76}{60\cdots 75}a^{6}+\frac{54\cdots 86}{12\cdots 15}a^{5}-\frac{78\cdots 12}{60\cdots 75}a^{4}-\frac{14\cdots 56}{60\cdots 75}a^{3}+\frac{35\cdots 12}{60\cdots 75}a^{2}+\frac{25\cdots 27}{70\cdots 95}a-\frac{11\cdots 93}{12\cdots 15}$, $\frac{24\cdots 61}{60\cdots 75}a^{17}-\frac{61\cdots 03}{35\cdots 75}a^{16}-\frac{24\cdots 16}{12\cdots 15}a^{15}+\frac{43\cdots 43}{60\cdots 75}a^{14}+\frac{50\cdots 17}{12\cdots 15}a^{13}-\frac{40\cdots 57}{35\cdots 75}a^{12}-\frac{25\cdots 02}{60\cdots 75}a^{11}+\frac{49\cdots 14}{60\cdots 75}a^{10}+\frac{13\cdots 52}{60\cdots 75}a^{9}-\frac{17\cdots 89}{60\cdots 75}a^{8}-\frac{37\cdots 96}{60\cdots 75}a^{7}+\frac{27\cdots 08}{60\cdots 75}a^{6}+\frac{50\cdots 77}{60\cdots 75}a^{5}-\frac{19\cdots 51}{60\cdots 75}a^{4}-\frac{26\cdots 07}{60\cdots 75}a^{3}+\frac{31\cdots 79}{24\cdots 43}a^{2}+\frac{79\cdots 83}{12\cdots 15}a-\frac{26\cdots 60}{14\cdots 79}$, $\frac{32\cdots 29}{60\cdots 75}a^{17}-\frac{13\cdots 66}{60\cdots 75}a^{16}-\frac{67\cdots 80}{24\cdots 43}a^{15}+\frac{11\cdots 02}{12\cdots 15}a^{14}+\frac{69\cdots 96}{12\cdots 15}a^{13}-\frac{38\cdots 48}{25\cdots 45}a^{12}-\frac{35\cdots 83}{60\cdots 75}a^{11}+\frac{64\cdots 82}{60\cdots 75}a^{10}+\frac{18\cdots 88}{60\cdots 75}a^{9}-\frac{22\cdots 02}{60\cdots 75}a^{8}-\frac{52\cdots 04}{60\cdots 75}a^{7}+\frac{35\cdots 16}{60\cdots 75}a^{6}+\frac{71\cdots 03}{60\cdots 75}a^{5}-\frac{25\cdots 77}{60\cdots 75}a^{4}-\frac{37\cdots 03}{60\cdots 75}a^{3}+\frac{10\cdots 77}{60\cdots 75}a^{2}+\frac{11\cdots 77}{12\cdots 15}a-\frac{30\cdots 03}{12\cdots 15}$, $\frac{34\cdots 94}{60\cdots 75}a^{17}-\frac{13\cdots 38}{60\cdots 75}a^{16}-\frac{18\cdots 59}{60\cdots 75}a^{15}+\frac{72\cdots 51}{75\cdots 25}a^{14}+\frac{38\cdots 07}{60\cdots 75}a^{13}-\frac{90\cdots 62}{60\cdots 75}a^{12}-\frac{40\cdots 89}{60\cdots 75}a^{11}+\frac{38\cdots 66}{35\cdots 75}a^{10}+\frac{22\cdots 89}{60\cdots 75}a^{9}-\frac{22\cdots 97}{60\cdots 75}a^{8}-\frac{12\cdots 48}{12\cdots 15}a^{7}+\frac{21\cdots 02}{35\cdots 75}a^{6}+\frac{17\cdots 48}{12\cdots 15}a^{5}-\frac{26\cdots 83}{60\cdots 75}a^{4}-\frac{48\cdots 92}{60\cdots 75}a^{3}+\frac{24\cdots 78}{12\cdots 15}a^{2}+\frac{14\cdots 33}{12\cdots 15}a-\frac{78\cdots 01}{24\cdots 43}$, $\frac{98\cdots 96}{60\cdots 75}a^{17}-\frac{40\cdots 37}{60\cdots 75}a^{16}-\frac{20\cdots 43}{24\cdots 43}a^{15}+\frac{17\cdots 57}{60\cdots 75}a^{14}+\frac{21\cdots 07}{12\cdots 15}a^{13}-\frac{26\cdots 66}{60\cdots 75}a^{12}-\frac{11\cdots 12}{60\cdots 75}a^{11}+\frac{19\cdots 22}{60\cdots 75}a^{10}+\frac{60\cdots 42}{60\cdots 75}a^{9}-\frac{66\cdots 82}{60\cdots 75}a^{8}-\frac{17\cdots 21}{60\cdots 75}a^{7}+\frac{43\cdots 48}{24\cdots 43}a^{6}+\frac{23\cdots 02}{60\cdots 75}a^{5}-\frac{16\cdots 01}{12\cdots 15}a^{4}-\frac{13\cdots 27}{60\cdots 75}a^{3}+\frac{36\cdots 11}{60\cdots 75}a^{2}+\frac{42\cdots 03}{12\cdots 15}a-\frac{12\cdots 44}{12\cdots 15}$, $\frac{83\cdots 41}{60\cdots 75}a^{17}-\frac{37\cdots 18}{60\cdots 75}a^{16}-\frac{41\cdots 81}{60\cdots 75}a^{15}+\frac{15\cdots 16}{60\cdots 75}a^{14}+\frac{81\cdots 77}{60\cdots 75}a^{13}-\frac{24\cdots 36}{60\cdots 75}a^{12}-\frac{79\cdots 32}{60\cdots 75}a^{11}+\frac{18\cdots 62}{60\cdots 75}a^{10}+\frac{40\cdots 93}{60\cdots 75}a^{9}-\frac{62\cdots 19}{60\cdots 75}a^{8}-\frac{10\cdots 68}{60\cdots 75}a^{7}+\frac{10\cdots 93}{60\cdots 75}a^{6}+\frac{14\cdots 09}{60\cdots 75}a^{5}-\frac{40\cdots 91}{35\cdots 75}a^{4}-\frac{72\cdots 94}{60\cdots 75}a^{3}+\frac{23\cdots 29}{60\cdots 75}a^{2}+\frac{20\cdots 16}{12\cdots 15}a-\frac{60\cdots 06}{12\cdots 15}$, $\frac{42\cdots 99}{35\cdots 75}a^{17}-\frac{27\cdots 74}{60\cdots 75}a^{16}-\frac{38\cdots 96}{60\cdots 75}a^{15}+\frac{11\cdots 51}{60\cdots 75}a^{14}+\frac{81\cdots 34}{60\cdots 75}a^{13}-\frac{34\cdots 67}{12\cdots 15}a^{12}-\frac{86\cdots 64}{60\cdots 75}a^{11}+\frac{24\cdots 44}{12\cdots 15}a^{10}+\frac{28\cdots 19}{35\cdots 75}a^{9}-\frac{39\cdots 23}{60\cdots 75}a^{8}-\frac{13\cdots 04}{60\cdots 75}a^{7}+\frac{56\cdots 72}{60\cdots 75}a^{6}+\frac{22\cdots 28}{70\cdots 95}a^{5}-\frac{31\cdots 13}{60\cdots 75}a^{4}-\frac{10\cdots 21}{60\cdots 75}a^{3}+\frac{14\cdots 22}{60\cdots 75}a^{2}+\frac{29\cdots 89}{12\cdots 15}a-\frac{64\cdots 78}{12\cdots 15}$, $\frac{85\cdots 54}{35\cdots 75}a^{17}-\frac{35\cdots 99}{35\cdots 75}a^{16}-\frac{75\cdots 72}{60\cdots 75}a^{15}+\frac{25\cdots 19}{60\cdots 75}a^{14}+\frac{15\cdots 09}{60\cdots 75}a^{13}-\frac{39\cdots 38}{60\cdots 75}a^{12}-\frac{16\cdots 41}{60\cdots 75}a^{11}+\frac{28\cdots 36}{60\cdots 75}a^{10}+\frac{87\cdots 68}{60\cdots 75}a^{9}-\frac{19\cdots 13}{12\cdots 15}a^{8}-\frac{24\cdots 97}{60\cdots 75}a^{7}+\frac{15\cdots 66}{60\cdots 75}a^{6}+\frac{67\cdots 34}{12\cdots 15}a^{5}-\frac{11\cdots 94}{60\cdots 75}a^{4}-\frac{72\cdots 39}{24\cdots 43}a^{3}+\frac{48\cdots 69}{60\cdots 75}a^{2}+\frac{10\cdots 36}{24\cdots 43}a-\frac{14\cdots 16}{12\cdots 15}$
|
| |
| Regulator: | \( 100698193013 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 100698193013 \cdot 1}{2\cdot\sqrt{176938682194265948289288000000000}}\cr\approx \mathstrut & 0.992247948069549 \end{aligned}\] (assuming GRH)
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.1620.1 x3, 6.6.13122000.1, 9.9.1189751847048000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Minimal sibling: | 9.9.1189751847048000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }^{6}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | R | ${\href{/padicField/29.3.0.1}{3} }^{6}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{9}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.6.0.1}{6} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.6.3.12a1.2 | $x^{18} + 3 x^{16} + 3 x^{15} + 3 x^{14} + 9 x^{13} + 7 x^{12} + 9 x^{11} + 15 x^{10} + 10 x^{9} + 12 x^{8} + 15 x^{7} + 9 x^{6} + 9 x^{5} + 9 x^{4} + 4 x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $6$ | $12$ | $S_3 \times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(3\)
| 3.6.3.24a1.1 | $x^{18} + 6 x^{16} + 15 x^{14} + 6 x^{13} + 29 x^{12} + 24 x^{11} + 51 x^{10} + 36 x^{9} + 72 x^{8} + 60 x^{7} + 85 x^{6} + 78 x^{5} + 69 x^{4} + 44 x^{3} + 60 x^{2} + 48 x + 23$ | $3$ | $6$ | $24$ | $S_3 \times C_3$ | not computed |
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(23\)
| 23.2.3.4a1.1 | $x^{6} + 63 x^{5} + 1338 x^{4} + 9891 x^{3} + 6690 x^{2} + 1598 x + 125$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
| 23.2.3.4a1.1 | $x^{6} + 63 x^{5} + 1338 x^{4} + 9891 x^{3} + 6690 x^{2} + 1598 x + 125$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
| 23.6.1.0a1.1 | $x^{6} + x^{4} + 9 x^{3} + 9 x^{2} + x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |