Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $24$ | |
| Group : | $C_3^2:S_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (5,7,9)(6,8,10)(11,15,13)(12,16,14), (1,8,13)(2,7,14)(3,10,15)(4,9,16)(5,12,18)(6,11,17), (1,2)(3,4)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16)(17,18) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 18: $C_3^2:C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $S_3$
Degree 9: $(C_3^2:C_3):C_2$
Low degree siblings
9T12 x 4, 18T24 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 7, 9)( 6, 8,10)(11,15,13)(12,16,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5,11)( 6,12)( 7,13)( 8,14)( 9,15)(10,16)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3,17)( 2, 4,18)( 5, 7, 9)( 6, 8,10)(11,13,15)(12,14,16)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 4,17, 2, 3,18)( 5,11, 9,15, 7,13)( 6,12,10,16, 8,14)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 5, 3, 7,17, 9)( 2, 6, 4, 8,18,10)(11,16,13,12,15,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 6,11)( 2, 5,12)( 3, 8,13)( 4, 7,14)( 9,16,18)(10,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 6,13)( 2, 5,14)( 3, 8,15)( 4, 7,16)( 9,12,18)(10,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 6,15)( 2, 5,16)( 3, 8,11)( 4, 7,12)( 9,14,18)(10,13,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,17, 3)( 2,18, 4)( 5, 9, 7)( 6,10, 8)(11,15,13)(12,16,14)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 8] |
| Character table: |
2 1 . 1 1 1 1 . . . 1
3 3 2 1 3 1 1 2 2 2 3
1a 3a 2a 3b 6a 6b 3c 3d 3e 3f
2P 1a 3a 1a 3f 3f 3b 3c 3d 3e 3b
3P 1a 1a 2a 1a 2a 2a 1a 1a 1a 1a
5P 1a 3a 2a 3f 6b 6a 3c 3d 3e 3b
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 -1 -1 1 1 1 1
X.3 2 2 . 2 . . -1 -1 -1 2
X.4 2 -1 . 2 . . 2 -1 -1 2
X.5 2 -1 . 2 . . -1 -1 2 2
X.6 2 -1 . 2 . . -1 2 -1 2
X.7 3 . -1 A B /B . . . /A
X.8 3 . -1 /A /B B . . . A
X.9 3 . 1 A -B -/B . . . /A
X.10 3 . 1 /A -/B -B . . . A
A = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
B = -E(3)^2
= (1+Sqrt(-3))/2 = 1+b3
|