Normalized defining polynomial
\( x^{18} - 9 x^{17} + 24 x^{16} + 12 x^{15} - 158 x^{14} + 182 x^{13} + 237 x^{12} - 590 x^{11} + 78 x^{10} + \cdots - 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[14, 2]$ |
| |
| Discriminant: |
\(88133009763711378710013049\)
\(\medspace = 7^{12}\cdot 53^{6}\cdot 287281\)
|
| |
| Root discriminant: | \(27.63\) |
| |
| Galois root discriminant: | $7^{2/3}53^{1/2}287281^{1/2}\approx 14278.746392340992$ | ||
| Ramified primes: |
\(7\), \(53\), \(287281\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{287281}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$3a^{16}-24a^{15}+50a^{14}+70a^{13}-371a^{12}+224a^{11}+685a^{10}-950a^{9}-227a^{8}+1064a^{7}-439a^{6}-398a^{5}+378a^{4}-85a^{2}+20a+10$, $a^{16}-8a^{15}+16a^{14}+28a^{13}-129a^{12}+46a^{11}+293a^{10}-266a^{9}-276a^{8}+346a^{7}+124a^{6}-185a^{5}-41a^{4}+51a^{3}+15a^{2}-15a-6$, $a-1$, $a^{16}-8a^{15}+17a^{14}+21a^{13}-121a^{12}+89a^{11}+195a^{10}-337a^{9}+24a^{8}+331a^{7}-257a^{6}-61a^{5}+160a^{4}-45a^{3}-21a^{2}+12a+2$, $a^{17}-8a^{16}+16a^{15}+28a^{14}-130a^{13}+52a^{12}+289a^{11}-301a^{10}-223a^{9}+410a^{8}-7a^{7}-229a^{6}+82a^{5}+56a^{4}-30a^{3}-6a^{2}+3a$, $2a^{14}-14a^{13}+18a^{12}+74a^{11}-186a^{10}-82a^{9}+495a^{8}-102a^{7}-548a^{6}+242a^{5}+251a^{4}-150a^{3}-37a^{2}+37a+9$, $3a^{16}-24a^{15}+50a^{14}+70a^{13}-370a^{12}+218a^{11}+690a^{10}-920a^{9}-280a^{8}+1030a^{7}-331a^{6}-411a^{5}+306a^{4}+33a^{3}-73a^{2}+9a+8$, $a^{16}-8a^{15}+15a^{14}+35a^{13}-139a^{12}+15a^{11}+382a^{10}-260a^{9}-470a^{8}+459a^{7}+266a^{6}-340a^{5}-47a^{4}+119a^{3}-5a^{2}-23a-3$, $4a^{16}-32a^{15}+65a^{14}+105a^{13}-510a^{12}+239a^{11}+1066a^{10}-1205a^{9}-698a^{8}+1497a^{7}-148a^{6}-701a^{5}+287a^{4}+105a^{3}-69a^{2}-5a+3$, $a^{17}-12a^{16}+48a^{15}-38a^{14}-228a^{13}+553a^{12}+13a^{11}-1275a^{10}+1028a^{9}+860a^{8}-1481a^{7}+217a^{6}+709a^{5}-404a^{4}-86a^{3}+109a^{2}-11a-13$, $2a^{15}-14a^{14}+18a^{13}+74a^{12}-186a^{11}-82a^{10}+495a^{9}-102a^{8}-548a^{7}+242a^{6}+251a^{5}-150a^{4}-37a^{3}+38a^{2}+8a-1$, $4a^{16}-32a^{15}+66a^{14}+98a^{13}-500a^{12}+270a^{11}+978a^{10}-1216a^{9}-503a^{8}+1410a^{7}-315a^{6}-583a^{5}+337a^{4}+51a^{3}-70a^{2}+6a+4$, $a^{17}-8a^{16}+16a^{15}+28a^{14}-130a^{13}+52a^{12}+289a^{11}-301a^{10}-223a^{9}+410a^{8}-7a^{7}-229a^{6}+82a^{5}+56a^{4}-30a^{3}-6a^{2}+3a+1$, $a^{17}-8a^{16}+17a^{15}+21a^{14}-121a^{13}+90a^{12}+190a^{11}-338a^{10}+60a^{9}+303a^{8}-342a^{7}+35a^{6}+228a^{5}-147a^{4}-23a^{3}+46a^{2}-6a-5$, $3a^{17}-28a^{16}+82a^{15}+3a^{14}-462a^{13}+715a^{12}+378a^{11}-1835a^{10}+1030a^{9}+1320a^{8}-1800a^{7}+190a^{6}+850a^{5}-466a^{4}-73a^{3}+114a^{2}-11a-11$
|
| |
| Regulator: | \( 5605712.54201 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{2}\cdot 5605712.54201 \cdot 1}{2\cdot\sqrt{88133009763711378710013049}}\cr\approx \mathstrut & 0.193112863263 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.(A_4\times S_4)$ (as 18T544):
| A solvable group of order 9216 |
| The 96 conjugacy class representatives for $C_2^5.(A_4\times S_4)$ |
| Character table for $C_2^5.(A_4\times S_4)$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}{,}\,{\href{/padicField/2.3.0.1}{3} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.6.0.1}{6} }$ | ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.6.0.1}{6} }$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{4}$ | ${\href{/padicField/17.3.0.1}{3} }^{6}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{6}$ | R | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.3.3.6a1.3 | $x^{9} + 18 x^{8} + 108 x^{7} + 228 x^{6} + 144 x^{5} + 432 x^{4} + 48 x^{3} + 288 x^{2} + 71$ | $3$ | $3$ | $6$ | $C_3^2$ | $$[\ ]_{3}^{3}$$ |
| 7.3.3.6a1.3 | $x^{9} + 18 x^{8} + 108 x^{7} + 228 x^{6} + 144 x^{5} + 432 x^{4} + 48 x^{3} + 288 x^{2} + 71$ | $3$ | $3$ | $6$ | $C_3^2$ | $$[\ ]_{3}^{3}$$ | |
|
\(53\)
| 53.6.1.0a1.1 | $x^{6} + x^{4} + 7 x^{3} + 4 x^{2} + 45 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |
| 53.6.2.6a1.2 | $x^{12} + 2 x^{10} + 14 x^{9} + 9 x^{8} + 104 x^{7} + 61 x^{6} + 146 x^{5} + 650 x^{4} + 388 x^{3} + 2041 x^{2} + 180 x + 57$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(287281\)
| $\Q_{287281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{287281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |