Properties

Label 18T544
Order \(9216\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $544$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,7,17,14,5,2,11,8,18,13,6)(3,15,10)(4,16,9), (1,14,8)(2,13,7)(3,12,10,17,16,5)(4,11,9,18,15,6)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
12:  $A_4$, $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $S_4$, $A_4\times C_2$ x 3
36:  $C_6\times S_3$
48:  $S_4\times C_2$, $C_2^2 \times A_4$
72:  12T43, 12T45
144:  18T60, 18T61
288:  $A_4\wr C_2$, 16T709
576:  12T158, 18T176
1152:  12T205, 12T206
2304:  18T366, 18T367
4608:  18T462

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$, $S_3$

Degree 6: None

Degree 9: $S_3\times C_3$

Low degree siblings

18T544 x 5

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 96 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $9216=2^{10} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.