Normalized defining polynomial
\( x^{18} - 7x^{16} + 7x^{14} + 45x^{12} - 100x^{10} - 13x^{8} + 170x^{6} - 139x^{4} + 36x^{2} - 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[14, 2]$ |
| |
| Discriminant: |
\(75613185918270483380568064\)
\(\medspace = 2^{18}\cdot 19^{16}\)
|
| |
| Root discriminant: | \(27.40\) |
| |
| Galois root discriminant: | $2^{63/32}19^{8/9}\approx 53.61948908490599$ | ||
| Ramified primes: |
\(2\), \(19\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{113}a^{16}+\frac{37}{113}a^{14}+\frac{53}{113}a^{12}+\frac{4}{113}a^{10}-\frac{37}{113}a^{8}+\frac{54}{113}a^{6}-\frac{53}{113}a^{4}+\frac{15}{113}a^{2}+\frac{18}{113}$, $\frac{1}{113}a^{17}+\frac{37}{113}a^{15}+\frac{53}{113}a^{13}+\frac{4}{113}a^{11}-\frac{37}{113}a^{9}+\frac{54}{113}a^{7}-\frac{53}{113}a^{5}+\frac{15}{113}a^{3}+\frac{18}{113}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{169}{113}a^{17}-\frac{1092}{113}a^{15}+\frac{595}{113}a^{13}+\frac{7908}{113}a^{11}-\frac{12581}{113}a^{9}-\frac{8841}{113}a^{7}+\frac{23474}{113}a^{5}-\frac{11025}{113}a^{3}+\frac{1008}{113}a$, $\frac{99}{113}a^{16}-\frac{631}{113}a^{14}+\frac{275}{113}a^{12}+\frac{4690}{113}a^{10}-\frac{6714}{113}a^{8}-\frac{6067}{113}a^{6}+\frac{12381}{113}a^{4}-\frac{4843}{113}a^{2}+\frac{200}{113}$, $a$, $\frac{290}{113}a^{17}-\frac{1813}{113}a^{15}+\frac{680}{113}a^{13}+\frac{13477}{113}a^{11}-\frac{18753}{113}a^{9}-\frac{17223}{113}a^{7}+\frac{34915}{113}a^{5}-\frac{14860}{113}a^{3}+\frac{1604}{113}a$, $\frac{675}{113}a^{17}-\frac{4292}{113}a^{15}+\frac{1988}{113}a^{13}+\frac{31515}{113}a^{11}-\frac{47123}{113}a^{9}-\frac{38017}{113}a^{7}+\frac{88412}{113}a^{5}-\frac{38352}{113}a^{3}+\frac{2884}{113}a$, $\frac{95}{113}a^{17}-\frac{553}{113}a^{15}-\frac{50}{113}a^{13}+\frac{4561}{113}a^{11}-\frac{4080}{113}a^{9}-\frac{8656}{113}a^{7}+\frac{8525}{113}a^{5}+\frac{521}{113}a^{3}-\frac{1228}{113}a$, $\frac{420}{113}a^{16}-\frac{2653}{113}a^{14}+\frac{1129}{113}a^{12}+\frac{19647}{113}a^{10}-\frac{28535}{113}a^{8}-\frac{24780}{113}a^{6}+\frac{54128}{113}a^{4}-\frac{21611}{113}a^{2}+\frac{780}{113}$, $\frac{420}{113}a^{16}-\frac{2653}{113}a^{14}+\frac{1129}{113}a^{12}+\frac{19647}{113}a^{10}-\frac{28535}{113}a^{8}-\frac{24780}{113}a^{6}+\frac{54128}{113}a^{4}-\frac{21611}{113}a^{2}+\frac{667}{113}$, $\frac{385}{113}a^{17}-\frac{216}{113}a^{16}-\frac{2479}{113}a^{15}+\frac{1387}{113}a^{14}+\frac{1308}{113}a^{13}-\frac{713}{113}a^{12}+\frac{18038}{113}a^{11}-\frac{10130}{113}a^{10}-\frac{28370}{113}a^{9}+\frac{15789}{113}a^{8}-\frac{20794}{113}a^{7}+\frac{11953}{113}a^{6}+\frac{53497}{113}a^{5}-\frac{30023}{113}a^{4}-\frac{23492}{113}a^{3}+\frac{12467}{113}a^{2}+\frac{1393}{113}a-\frac{385}{113}$, $\frac{94}{113}a^{17}-\frac{26}{113}a^{16}-\frac{477}{113}a^{15}+\frac{168}{113}a^{14}-\frac{442}{113}a^{13}-\frac{22}{113}a^{12}+\frac{4557}{113}a^{11}-\frac{1460}{113}a^{10}-\frac{1218}{113}a^{9}+\frac{1414}{113}a^{8}-\frac{12326}{113}a^{7}+\frac{3229}{113}a^{6}+\frac{5414}{113}a^{5}-\frac{2916}{113}a^{4}+\frac{8642}{113}a^{3}-\frac{1068}{113}a^{2}-\frac{4749}{113}a+\frac{888}{113}$, $\frac{874}{113}a^{17}-\frac{77}{113}a^{16}-\frac{5517}{113}a^{15}+\frac{428}{113}a^{14}+\frac{2365}{113}a^{13}+\frac{100}{113}a^{12}+\frac{40786}{113}a^{11}-\frac{3472}{113}a^{10}-\frac{59571}{113}a^{9}+\frac{2736}{113}a^{8}-\frac{51001}{113}a^{7}+\frac{6238}{113}a^{6}+\frac{113234}{113}a^{5}-\frac{5411}{113}a^{4}-\frac{45650}{113}a^{3}+\frac{314}{113}a^{2}+\frac{1720}{113}a-\frac{30}{113}$, $\frac{273}{113}a^{17}+\frac{385}{113}a^{16}-\frac{1651}{113}a^{15}-\frac{2366}{113}a^{14}+\frac{344}{113}a^{13}+\frac{630}{113}a^{12}+\frac{12618}{113}a^{11}+\frac{18038}{113}a^{10}-\frac{15412}{113}a^{9}-\frac{22833}{113}a^{8}-\frac{18254}{113}a^{7}-\frac{25879}{113}a^{6}+\frac{29714}{113}a^{5}+\frac{43440}{113}a^{4}-\frac{9578}{113}a^{3}-\frac{14339}{113}a^{2}-\frac{58}{113}a+\frac{263}{113}$, $\frac{207}{113}a^{17}-\frac{601}{113}a^{16}-\frac{1268}{113}a^{15}+\frac{3753}{113}a^{14}+\frac{349}{113}a^{13}-\frac{1343}{113}a^{12}+\frac{9642}{113}a^{11}-\frac{28168}{113}a^{10}-\frac{12518}{113}a^{9}+\frac{38622}{113}a^{8}-\frac{13795}{113}a^{7}+\frac{37832}{113}a^{6}+\frac{24624}{113}a^{5}-\frac{73463}{113}a^{4}-\frac{7065}{113}a^{3}+\frac{26806}{113}a^{2}-\frac{681}{113}a-\frac{648}{113}$, $a^{17}+\frac{47}{113}a^{16}-7a^{15}-\frac{295}{113}a^{14}+7a^{13}+\frac{118}{113}a^{12}+45a^{11}+\frac{2222}{113}a^{10}-100a^{9}-\frac{3208}{113}a^{8}-13a^{7}-\frac{3112}{113}a^{6}+170a^{5}+\frac{6549}{113}a^{4}-139a^{3}-\frac{1555}{113}a^{2}+36a-\frac{623}{113}$, $\frac{95}{113}a^{17}+\frac{601}{113}a^{16}-\frac{553}{113}a^{15}-\frac{3753}{113}a^{14}-\frac{50}{113}a^{13}+\frac{1343}{113}a^{12}+\frac{4561}{113}a^{11}+\frac{28168}{113}a^{10}-\frac{4080}{113}a^{9}-\frac{38622}{113}a^{8}-\frac{8656}{113}a^{7}-\frac{37832}{113}a^{6}+\frac{8525}{113}a^{5}+\frac{73463}{113}a^{4}+\frac{521}{113}a^{3}-\frac{26806}{113}a^{2}-\frac{1228}{113}a+\frac{535}{113}$
|
| |
| Regulator: | \( 4500826.05302 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{2}\cdot 4500826.05302 \cdot 1}{2\cdot\sqrt{75613185918270483380568064}}\cr\approx \mathstrut & 0.167395253923 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:C_9$ (as 18T177):
| A solvable group of order 576 |
| The 16 conjugacy class representatives for $C_2^6:C_9$ |
| Character table for $C_2^6:C_9$ |
Intermediate fields
| 3.3.361.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 12.4.1607222233084985344.7 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }^{2}$ | ${\href{/padicField/5.9.0.1}{9} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{6}$ | ${\href{/padicField/11.3.0.1}{3} }^{6}$ | ${\href{/padicField/13.9.0.1}{9} }^{2}$ | ${\href{/padicField/17.9.0.1}{9} }^{2}$ | R | ${\href{/padicField/23.9.0.1}{9} }^{2}$ | ${\href{/padicField/29.9.0.1}{9} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ | ${\href{/padicField/41.9.0.1}{9} }^{2}$ | ${\href{/padicField/43.9.0.1}{9} }^{2}$ | ${\href{/padicField/47.9.0.1}{9} }^{2}$ | ${\href{/padicField/53.9.0.1}{9} }^{2}$ | ${\href{/padicField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.9.2.18a59.1 | $x^{18} + 2 x^{17} + 2 x^{16} + 2 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 2 x^{7} + 4 x^{6} + 2 x^{5} + 4 x^{4} + 2 x^{2} + 3$ | $2$ | $9$ | $18$ | 18T177 | $$[2, 2, 2, 2, 2, 2]^{9}$$ |
|
\(19\)
| 19.1.9.8a1.1 | $x^{9} + 19$ | $9$ | $1$ | $8$ | $C_9$ | $$[\ ]_{9}$$ |
| 19.1.9.8a1.1 | $x^{9} + 19$ | $9$ | $1$ | $8$ | $C_9$ | $$[\ ]_{9}$$ |