Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $177$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,17,9,4,13,11,6,15,8)(2,18,10,3,14,12,5,16,7), (1,4,5)(2,3,6)(7,9,11)(8,10,12)(13,16,18)(14,15,17) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 9: $C_9$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: None
Degree 9: $C_9$
Low degree siblings
12T166 x 7, 18T177 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(15,16)(17,18)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 5, 6)(15,16)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 4, 6)( 2, 3, 5)( 7,10,12)( 8, 9,11)(13,15,17)(14,16,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 6, 4)( 2, 5, 3)( 7,12,10)( 8,11, 9)(13,17,15)(14,18,16)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,17, 9, 4,13,11, 6,15, 8)( 2,18,10, 3,14,12, 5,16, 7)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,13, 8, 4,15, 9, 6,17,11)( 2,14, 7, 3,16,10, 5,18,12)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,15,11, 4,17, 8, 6,13, 9)( 2,16,12, 3,18, 7, 5,14,10)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1, 9,13, 6, 8,17, 4,11,15)( 2,10,14, 5, 7,18, 3,12,16)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,11,17, 6, 9,15, 4, 8,13)( 2,12,18, 5,10,16, 3, 7,14)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1, 8,15, 6,11,13, 4, 9,17)( 2, 7,16, 5,12,14, 3,10,18)$ |
Group invariants
| Order: | $576=2^{6} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [576, 8661] |
| Character table: |
2 6 6 6 6 6 6 6 6 . . . . . . . .
3 2 . . . . . . . 2 2 2 2 2 2 2 2
1a 2a 2b 2c 2d 2e 2f 2g 3a 3b 9a 9b 9c 9d 9e 9f
2P 1a 1a 1a 1a 1a 1a 1a 1a 3b 3a 9d 9f 9e 9b 9a 9c
3P 1a 2a 2b 2c 2d 2e 2f 2g 1a 1a 3a 3a 3a 3b 3b 3b
5P 1a 2a 2b 2c 2d 2e 2f 2g 3b 3a 9e 9d 9f 9a 9c 9b
7P 1a 2a 2b 2c 2d 2e 2f 2g 3a 3b 9c 9a 9b 9e 9f 9d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 A A A /A /A /A
X.3 1 1 1 1 1 1 1 1 1 1 /A /A /A A A A
X.4 1 1 1 1 1 1 1 1 A /A B C D /D /C /B
X.5 1 1 1 1 1 1 1 1 A /A C D B /B /D /C
X.6 1 1 1 1 1 1 1 1 A /A D B C /C /B /D
X.7 1 1 1 1 1 1 1 1 /A A /B /C /D D C B
X.8 1 1 1 1 1 1 1 1 /A A /D /B /C C B D
X.9 1 1 1 1 1 1 1 1 /A A /C /D /B B D C
X.10 9 5 1 1 1 -3 -3 -3 . . . . . . . .
X.11 9 1 1 -3 -3 -3 5 1 . . . . . . . .
X.12 9 -3 1 -3 5 1 1 -3 . . . . . . . .
X.13 9 -3 5 1 -3 1 -3 1 . . . . . . . .
X.14 9 -3 -3 5 1 -3 1 1 . . . . . . . .
X.15 9 1 -3 -3 1 1 -3 5 . . . . . . . .
X.16 9 1 -3 1 -3 5 1 -3 . . . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -E(9)^2-E(9)^5
C = E(9)^5
D = E(9)^2
|