Properties

Label 18.14.708...264.4
Degree $18$
Signature $[14, 2]$
Discriminant $7.085\times 10^{25}$
Root discriminant \(27.30\)
Ramified primes $2,37,229$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $A_4^3.S_4$ (as 18T711)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^16 + 5*x^14 + 35*x^12 - 88*x^10 + 52*x^8 + 36*x^6 - 46*x^4 + 13*x^2 - 1)
 
Copy content gp:K = bnfinit(y^18 - 6*y^16 + 5*y^14 + 35*y^12 - 88*y^10 + 52*y^8 + 36*y^6 - 46*y^4 + 13*y^2 - 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^16 + 5*x^14 + 35*x^12 - 88*x^10 + 52*x^8 + 36*x^6 - 46*x^4 + 13*x^2 - 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 6*x^16 + 5*x^14 + 35*x^12 - 88*x^10 + 52*x^8 + 36*x^6 - 46*x^4 + 13*x^2 - 1)
 

\( x^{18} - 6x^{16} + 5x^{14} + 35x^{12} - 88x^{10} + 52x^{8} + 36x^{6} - 46x^{4} + 13x^{2} - 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[14, 2]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(70853239618582582520971264\) \(\medspace = 2^{18}\cdot 37^{4}\cdot 229^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.30\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(37\), \(229\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $15$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $a^{17}-6a^{15}+5a^{13}+35a^{11}-88a^{9}+52a^{7}+36a^{5}-46a^{3}+13a$, $a^{2}-1$, $a^{17}-7a^{15}+9a^{13}+39a^{11}-119a^{9}+75a^{7}+59a^{5}-65a^{3}+12a$, $a^{15}-3a^{13}-6a^{11}+24a^{9}-7a^{7}-22a^{5}+6a^{3}+4a$, $a^{17}-7a^{15}+9a^{13}+39a^{11}-119a^{9}+75a^{7}+59a^{5}-65a^{3}+11a$, $a^{15}-4a^{13}-3a^{11}+29a^{9}-30a^{7}-8a^{5}+20a^{3}-6a$, $a^{12}-2a^{10}-7a^{8}+16a^{6}+a^{4}-13a^{2}+3$, $a^{16}-4a^{14}-4a^{12}+31a^{10}-23a^{8}-23a^{6}+19a^{4}+a^{2}$, $a-1$, $a^{17}+3a^{16}-5a^{15}-14a^{14}-2a^{12}+35a^{11}+97a^{10}-53a^{9}-143a^{8}-a^{7}+6a^{6}+35a^{5}+92a^{4}-11a^{3}-40a^{2}+2a+3$, $a^{2}+a-1$, $3a^{15}+2a^{14}-11a^{13}-9a^{12}-12a^{11}-5a^{10}+83a^{9}+67a^{8}-67a^{7}-68a^{6}-45a^{5}-32a^{4}+48a^{3}+46a^{2}-4a-6$, $a^{17}-6a^{15}-2a^{14}+5a^{13}+8a^{12}+35a^{11}+6a^{10}-88a^{9}-59a^{8}+52a^{7}+60a^{6}+36a^{5}+23a^{4}-46a^{3}-42a^{2}+13a+8$, $3a^{17}-18a^{15}+2a^{14}+13a^{13}-7a^{12}+112a^{11}-9a^{10}-255a^{9}+53a^{8}+103a^{7}-37a^{6}+145a^{5}-30a^{4}-108a^{3}+26a^{2}+13a-2$, $a^{17}+a^{16}-6a^{15}-5a^{14}+6a^{13}+a^{12}+33a^{11}+32a^{10}-95a^{9}-59a^{8}+68a^{7}+22a^{6}+37a^{5}+28a^{4}-59a^{3}-26a^{2}+15a+6$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4596460.1775 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{2}\cdot 4596460.1775 \cdot 1}{2\cdot\sqrt{70853239618582582520971264}}\cr\approx \mathstrut & 0.17660106817 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^16 + 5*x^14 + 35*x^12 - 88*x^10 + 52*x^8 + 36*x^6 - 46*x^4 + 13*x^2 - 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 6*x^16 + 5*x^14 + 35*x^12 - 88*x^10 + 52*x^8 + 36*x^6 - 46*x^4 + 13*x^2 - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^16 + 5*x^14 + 35*x^12 - 88*x^10 + 52*x^8 + 36*x^6 - 46*x^4 + 13*x^2 - 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 6*x^16 + 5*x^14 + 35*x^12 - 88*x^10 + 52*x^8 + 36*x^6 - 46*x^4 + 13*x^2 - 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$A_4^3.S_4$ (as 18T711):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 41472
The 96 conjugacy class representatives for $A_4^3.S_4$
Character table for $A_4^3.S_4$

Intermediate fields

3.3.229.1, 9.9.16440305941.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 18.14.850875775193922429085936178692096.5

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.9.0.1}{9} }^{2}$ ${\href{/padicField/5.9.0.1}{9} }^{2}$ ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ ${\href{/padicField/11.3.0.1}{3} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{3}$ ${\href{/padicField/17.9.0.1}{9} }^{2}$ ${\href{/padicField/19.9.0.1}{9} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ R ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }$ ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{10}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.6a3.2$x^{6} + 4 x^{4} + 4 x^{3} + 7 x^{2} + 6 x + 5$$2$$3$$6$$A_4\times C_2$$$[2, 2]^{6}$$
2.6.2.12a3.2$x^{12} + 2 x^{10} + 4 x^{9} + x^{8} + 6 x^{7} + 5 x^{6} + 2 x^{5} + 6 x^{4} + 4 x^{3} + x^{2} + 6 x + 3$$2$$6$$12$12T105$$[2, 2, 2, 2]^{12}$$
\(37\) Copy content Toggle raw display 37.3.1.0a1.1$x^{3} + 6 x + 35$$1$$3$$0$$C_3$$$[\ ]^{3}$$
37.3.1.0a1.1$x^{3} + 6 x + 35$$1$$3$$0$$C_3$$$[\ ]^{3}$$
37.6.1.0a1.1$x^{6} + 35 x^{3} + 4 x^{2} + 30 x + 2$$1$$6$$0$$C_6$$$[\ ]^{6}$$
37.2.3.4a1.3$x^{6} + 99 x^{5} + 3273 x^{4} + 36333 x^{3} + 6546 x^{2} + 544 x + 1303$$3$$2$$4$$C_6$$$[\ ]_{3}^{2}$$
\(229\) Copy content Toggle raw display Deg $3$$1$$3$$0$$C_3$$$[\ ]^{3}$$
Deg $3$$1$$3$$0$$C_3$$$[\ ]^{3}$$
Deg $12$$2$$6$$6$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)