Properties

Label 18T711
Order \(41472\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $711$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (5,15,9,14,8,11,6,16,10,13,7,12)(17,18), (1,14,17,11,3,15,2,13,18,12,4,16)(9,10)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $S_3$, $C_6$
18:  $S_3\times C_3$
24:  $S_4$
54:  $C_3^2 : C_6$
72:  12T45
162:  $C_3 \wr S_3 $
216:  18T97
648:  18T203
10368:  12T275

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $C_3 \wr S_3 $

Low degree siblings

18T704

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 96 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $41472=2^{9} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.