Normalized defining polynomial
\( x^{18} - 11x^{16} + 45x^{14} - 80x^{12} + 40x^{10} + 54x^{8} - 69x^{6} + 17x^{4} + 3x^{2} - 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[14, 2]$ |
| |
| Discriminant: |
\(24593947462164109131513856\)
\(\medspace = 2^{18}\cdot 9685993193^{2}\)
|
| |
| Root discriminant: | \(25.74\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(9685993193\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{15}-9a^{13}+27a^{11}-26a^{9}-12a^{7}+30a^{5}-9a^{3}-a$, $2a^{15}-18a^{13}+53a^{11}-45a^{9}-36a^{7}+55a^{5}-2a^{3}-4a$, $a^{17}-10a^{15}+35a^{13}-45a^{11}-5a^{9}+49a^{7}-20a^{5}-3a^{3}$, $a^{16}-9a^{14}+27a^{12}-27a^{10}-5a^{8}+17a^{6}-9a^{4}+10a^{2}-3$, $a^{16}-8a^{14}+18a^{12}-31a^{8}+6a^{6}+17a^{4}+2a^{2}-1$, $a^{16}-8a^{14}+17a^{12}+8a^{10}-50a^{8}+13a^{6}+36a^{4}-9a^{2}-3$, $2a^{17}-21a^{15}+80a^{13}-125a^{11}+35a^{9}+103a^{7}-88a^{5}+11a^{3}+2a$, $a+1$, $a^{17}-10a^{15}+35a^{13}-45a^{11}-5a^{9}+49a^{7}-20a^{5}-3a^{3}-a-1$, $5a^{17}-54a^{15}-a^{14}+213a^{13}+9a^{12}-347a^{11}-27a^{10}+102a^{9}+26a^{8}+310a^{7}+12a^{6}-259a^{5}-30a^{4}+6a^{3}+9a^{2}+16a+2$, $a^{17}-13a^{15}+63a^{13}-133a^{11}+85a^{9}+90a^{7}-124a^{5}+20a^{3}+4a-1$, $2a^{15}-18a^{13}+53a^{11}-45a^{9}-36a^{7}+55a^{5}-3a^{3}-2a-1$, $2a^{17}-2a^{16}-19a^{15}+18a^{14}+62a^{13}-53a^{12}-71a^{11}+45a^{10}-18a^{9}+36a^{8}+85a^{7}-55a^{6}-36a^{5}+3a^{4}-11a^{3}+a^{2}+6a+1$, $a^{17}-11a^{15}+45a^{13}-80a^{11}+40a^{9}+54a^{7}-69a^{5}+17a^{3}+2a+1$
|
| |
| Regulator: | \( 2533950.03279 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{2}\cdot 2533950.03279 \cdot 1}{2\cdot\sqrt{24593947462164109131513856}}\cr\approx \mathstrut & 0.165247008689 \end{aligned}\] (assuming GRH)
Galois group
$C_2^8.S_9$ (as 18T964):
| A non-solvable group of order 92897280 |
| The 150 conjugacy class representatives for $C_2^8.S_9$ |
| Character table for $C_2^8.S_9$ |
Intermediate fields
| 9.9.9685993193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.9.0.1}{9} }^{2}$ | ${\href{/padicField/11.7.0.1}{7} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.7.0.1}{7} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.8.0.1}{8} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.9.0.1}{9} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.9.2.18a34.2 | $x^{18} + 2 x^{17} + 2 x^{14} + 4 x^{13} + 4 x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 2 x^{7} + 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 6 x^{2} + 2 x + 3$ | $2$ | $9$ | $18$ | 18T368 | $$[2, 2, 2, 2, 2, 2, 2, 2]^{9}$$ |
|
\(9685993193\)
| $\Q_{9685993193}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{9685993193}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |