Properties

Label 18T964
Order \(92897280\)
n \(18\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $964$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,12,18,8,5,9,2,15,11,17,7,6,10)(3,13,4,14), (1,11,15,2,12,16)(3,7)(4,8)(5,9,17,6,10,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
362880:  $S_9$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 6: None

Degree 9: $S_9$

Low degree siblings

18T965

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 150 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $92897280=2^{15} \cdot 3^{4} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.