Normalized defining polynomial
\( x^{18} - 18x^{14} + 9x^{12} + 81x^{10} - 54x^{8} - 90x^{6} + 81x^{4} - 9 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[10, 4]$ |
| |
| Discriminant: |
\(258151783382020583032356864\)
\(\medspace = 2^{18}\cdot 3^{44}\)
|
| |
| Root discriminant: | \(29.33\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}$, $\frac{1}{3}a^{10}$, $\frac{1}{3}a^{11}$, $\frac{1}{3}a^{12}$, $\frac{1}{3}a^{13}$, $\frac{1}{3}a^{14}$, $\frac{1}{3}a^{15}$, $\frac{1}{1293}a^{16}+\frac{23}{431}a^{14}+\frac{2}{1293}a^{12}+\frac{49}{431}a^{10}-\frac{40}{431}a^{8}-\frac{192}{431}a^{6}+\frac{83}{431}a^{4}+\frac{151}{431}a^{2}+\frac{75}{431}$, $\frac{1}{1293}a^{17}+\frac{23}{431}a^{15}+\frac{2}{1293}a^{13}+\frac{49}{431}a^{11}-\frac{40}{431}a^{9}-\frac{192}{431}a^{7}+\frac{83}{431}a^{5}+\frac{151}{431}a^{3}+\frac{75}{431}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1759}{1293}a^{17}-\frac{374}{431}a^{15}+\frac{30962}{1293}a^{13}+\frac{1302}{431}a^{11}-\frac{140185}{1293}a^{9}+\frac{1979}{431}a^{7}+\frac{53987}{431}a^{5}-\frac{13474}{431}a^{3}-\frac{7797}{431}a$, $\frac{637}{1293}a^{17}+\frac{422}{1293}a^{15}-\frac{11225}{1293}a^{13}-\frac{1612}{1293}a^{11}+\frac{51136}{1293}a^{9}-\frac{762}{431}a^{7}-\frac{19968}{431}a^{5}+\frac{5677}{431}a^{3}+\frac{2951}{431}a$, $\frac{374}{431}a^{16}-\frac{700}{1293}a^{14}+\frac{6579}{431}a^{12}+\frac{2294}{1293}a^{10}-\frac{29683}{431}a^{8}+\frac{1217}{431}a^{6}+\frac{34019}{431}a^{4}-\frac{7797}{431}a^{2}-\frac{4846}{431}$, $\frac{2260}{1293}a^{16}+\frac{1642}{1293}a^{14}-\frac{39442}{1293}a^{12}-\frac{8270}{1293}a^{10}+\frac{58726}{431}a^{8}+\frac{1821}{431}a^{6}-\frac{64986}{431}a^{4}+\frac{14131}{431}a^{2}+\frac{8737}{431}$, $\frac{736}{431}a^{17}-\frac{1502}{1293}a^{15}+\frac{38684}{1293}a^{13}+\frac{2144}{431}a^{11}-\frac{173798}{1293}a^{9}+\frac{263}{431}a^{7}+\frac{65423}{431}a^{5}-\frac{14468}{431}a^{3}-\frac{9147}{431}a$, $\frac{285}{431}a^{16}-\frac{270}{431}a^{14}+\frac{14668}{1293}a^{12}+\frac{2067}{431}a^{10}-\frac{21399}{431}a^{8}-\frac{4792}{431}a^{6}+\frac{22131}{431}a^{4}-\frac{2391}{431}a^{2}-\frac{2492}{431}$, $\frac{673}{1293}a^{17}-\frac{320}{1293}a^{15}+\frac{4005}{431}a^{13}-\frac{232}{1293}a^{11}-\frac{55436}{1293}a^{9}+\frac{2933}{431}a^{7}+\frac{22583}{431}a^{5}-\frac{6372}{431}a^{3}-\frac{3496}{431}a$, $\frac{892}{431}a^{17}-\frac{1900}{1293}a^{15}+\frac{46799}{1293}a^{13}+\frac{9182}{1293}a^{11}-\frac{209872}{1293}a^{9}-\frac{1684}{431}a^{7}+\frac{78730}{431}a^{5}-\frac{16176}{431}a^{3}-\frac{11491}{431}a$, $a+1$, $\frac{3710}{1293}a^{17}-\frac{1254}{431}a^{16}-\frac{854}{431}a^{15}-\frac{2702}{1293}a^{14}+\frac{64988}{1293}a^{13}+\frac{65746}{1293}a^{12}+\frac{11482}{1293}a^{11}+\frac{4440}{431}a^{10}-\frac{292241}{1293}a^{9}-\frac{98207}{431}a^{8}-\frac{554}{431}a^{7}-\frac{2638}{431}a^{6}+\frac{110571}{431}a^{5}+\frac{110134}{431}a^{4}-\frac{23615}{431}a^{3}-\frac{22847}{431}a^{2}-\frac{16202}{431}a-\frac{15792}{431}$, $\frac{1284}{431}a^{17}-\frac{1592}{1293}a^{16}-\frac{2447}{1293}a^{15}-\frac{805}{1293}a^{14}+\frac{67721}{1293}a^{13}+\frac{28279}{1293}a^{12}+\frac{8279}{1293}a^{11}+\frac{3}{431}a^{10}-\frac{101934}{431}a^{9}-\frac{43208}{431}a^{8}+\frac{4729}{431}a^{7}+\frac{6550}{431}a^{6}+\frac{117318}{431}a^{5}+\frac{52332}{431}a^{4}-\frac{29541}{431}a^{3}-\frac{15410}{431}a^{2}-\frac{17801}{431}a-\frac{9064}{431}$, $\frac{944}{1293}a^{17}-\frac{1254}{431}a^{16}+\frac{917}{1293}a^{15}-\frac{2702}{1293}a^{14}-\frac{16214}{1293}a^{13}+\frac{65746}{1293}a^{12}-\frac{2447}{431}a^{11}+\frac{4440}{431}a^{10}+\frac{71188}{1293}a^{9}-\frac{98207}{431}a^{8}+\frac{6237}{431}a^{7}-\frac{2638}{431}a^{6}-\frac{24657}{431}a^{5}+\frac{110134}{431}a^{4}+\frac{745}{431}a^{3}-\frac{22847}{431}a^{2}+\frac{2702}{431}a-\frac{15792}{431}$, $\frac{1259}{431}a^{17}+\frac{5}{431}a^{16}-\frac{2875}{1293}a^{15}+\frac{173}{1293}a^{14}+\frac{65716}{1293}a^{13}+\frac{10}{431}a^{12}+\frac{15856}{1293}a^{11}-\frac{2536}{1293}a^{10}-\frac{97607}{431}a^{9}-\frac{600}{431}a^{8}-\frac{5792}{431}a^{7}+\frac{3154}{431}a^{6}+\frac{108027}{431}a^{5}+\frac{2107}{431}a^{4}-\frac{20802}{431}a^{3}-\frac{2476}{431}a^{2}-\frac{15624}{431}a-\frac{1030}{431}$
|
| |
| Regulator: | \( 6765640.006566327 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{4}\cdot 6765640.006566327 \cdot 1}{2\cdot\sqrt{258151783382020583032356864}}\cr\approx \mathstrut & 0.336016617164271 \end{aligned}\] (assuming GRH)
Galois group
$C_2^8:C_9$ (as 18T368):
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for $C_2^8:C_9$ |
| Character table for $C_2^8:C_9$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.9.0.1}{9} }^{2}$ | ${\href{/padicField/7.9.0.1}{9} }^{2}$ | ${\href{/padicField/11.9.0.1}{9} }^{2}$ | ${\href{/padicField/13.9.0.1}{9} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.9.0.1}{9} }^{2}$ | ${\href{/padicField/29.9.0.1}{9} }^{2}$ | ${\href{/padicField/31.9.0.1}{9} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.9.0.1}{9} }^{2}$ | ${\href{/padicField/43.9.0.1}{9} }^{2}$ | ${\href{/padicField/47.9.0.1}{9} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{6}$ | ${\href{/padicField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.9.2.18a33.1 | $x^{18} + 2 x^{17} + 2 x^{14} + 4 x^{13} + 4 x^{12} + 6 x^{9} + 5 x^{8} + 2 x^{7} + 2 x^{5} + 6 x^{4} + 2 x^{3} + 5$ | $2$ | $9$ | $18$ | 18T368 | $$[2, 2, 2, 2, 2, 2, 2, 2]^{9}$$ |
|
\(3\)
| 3.1.9.22a3.6 | $x^{9} + 18 x^{8} + 9 x^{7} + 6 x^{6} + 18 x^{5} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $$[2, 3]$$ |
| 3.1.9.22a3.6 | $x^{9} + 18 x^{8} + 9 x^{7} + 6 x^{6} + 18 x^{5} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $$[2, 3]$$ |