Normalized defining polynomial
\( x^{18} - 9 x^{17} + 42 x^{16} - 119 x^{15} + 219 x^{14} - 219 x^{13} - 63 x^{12} + 720 x^{11} - 1461 x^{10} + 1613 x^{9} - 378 x^{8} - 2184 x^{7} + 5316 x^{6} - 7317 x^{5} + 7290 x^{4} - 5308 x^{3} + 2691 x^{2} - 834 x + 125 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-54783205459591112303652864=-\,2^{12}\cdot 3^{18}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{15} + \frac{2}{25} a^{14} - \frac{2}{25} a^{13} - \frac{2}{25} a^{12} - \frac{4}{25} a^{11} + \frac{2}{25} a^{10} + \frac{6}{25} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{25} a^{6} + \frac{1}{25} a^{5} - \frac{2}{25} a^{4} + \frac{7}{25} a^{3} - \frac{12}{25} a^{2} + \frac{4}{25} a$, $\frac{1}{25} a^{16} - \frac{1}{25} a^{14} + \frac{2}{25} a^{13} + \frac{12}{25} a^{10} + \frac{8}{25} a^{9} - \frac{2}{5} a^{8} - \frac{1}{25} a^{7} + \frac{8}{25} a^{6} + \frac{11}{25} a^{5} + \frac{1}{25} a^{4} + \frac{9}{25} a^{3} - \frac{2}{25} a^{2} + \frac{12}{25} a$, $\frac{1}{787448472669102625} a^{17} - \frac{2388168634565091}{787448472669102625} a^{16} + \frac{10961719205656944}{787448472669102625} a^{15} + \frac{21183715988952788}{787448472669102625} a^{14} + \frac{16089029361480568}{787448472669102625} a^{13} - \frac{222415676958069}{157489694533820525} a^{12} + \frac{56860902875836272}{787448472669102625} a^{11} + \frac{110604212955537956}{787448472669102625} a^{10} - \frac{26440919080244193}{787448472669102625} a^{9} - \frac{15786318452494201}{787448472669102625} a^{8} + \frac{249433800807017454}{787448472669102625} a^{7} - \frac{82820188577942177}{787448472669102625} a^{6} + \frac{53872351764675837}{157489694533820525} a^{5} + \frac{272420889378662143}{787448472669102625} a^{4} + \frac{164564538052086824}{787448472669102625} a^{3} + \frac{21485804053970814}{787448472669102625} a^{2} - \frac{264973052837483192}{787448472669102625} a + \frac{2567599315703162}{6299587781352821}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 311633.43352525914 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.108.1, 6.0.15524784.3, 9.3.18443443392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.12.10.2 | $x^{12} + 143 x^{6} + 5929$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |