Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $52$ | |
| Group : | $C_2\times C_3^2:S_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,10)(2,14,9)(3,15,6)(4,16,5)(7,18,12)(8,17,11), (1,18,4,2,17,3)(5,14,8,15,10,12)(6,13,7,16,9,11), (1,16,4,11,17,13)(2,15,3,12,18,14)(5,10,8)(6,9,7) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 4 12: $D_{6}$ x 4 18: $C_3^2:C_2$ 36: 18T12 54: $(C_3^2:C_3):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 9: $(C_3^2:C_3):C_2$
Low degree siblings
18T52 x 7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8,10)( 6, 7, 9)(11,16,13)(12,15,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5,11)( 6,12)( 7,14)( 8,13)( 9,15)(10,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 7,10, 6, 8, 9)(11,15,13,12,16,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5,12)( 6,11)( 7,13)( 8,14)( 9,16)(10,15)(17,18)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1, 3,17, 2, 4,18)( 5, 7,10, 6, 8, 9)(11,14,16,12,13,15)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 3,17, 2, 4,18)( 5,12,10,15, 8,14)( 6,11, 9,16, 7,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8,10)( 6, 7, 9)(11,13,16)(12,14,15)$ |
| $ 6, 6, 3, 3 $ | $9$ | $6$ | $( 1, 4,17)( 2, 3,18)( 5,11,10,16, 8,13)( 6,12, 9,15, 7,14)$ |
| $ 6, 6, 3, 3 $ | $9$ | $6$ | $( 1, 5, 4, 8,17,10)( 2, 6, 3, 7,18, 9)(11,16,13)(12,15,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 5,11)( 2, 6,12)( 3, 7,14)( 4, 8,13)( 9,15,18)(10,16,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 5,13)( 2, 6,14)( 3, 7,15)( 4, 8,16)( 9,12,18)(10,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 5,16)( 2, 6,15)( 3, 7,12)( 4, 8,11)( 9,14,18)(10,13,17)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 6, 4, 7,17, 9)( 2, 5, 3, 8,18,10)(11,15,13,12,16,14)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6,11, 2, 5,12)( 3, 8,14, 4, 7,13)( 9,16,18,10,15,17)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6,13, 2, 5,14)( 3, 8,15, 4, 7,16)( 9,11,18,10,12,17)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6,16, 2, 5,15)( 3, 8,12, 4, 7,11)( 9,13,18,10,14,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,17, 4)( 2,18, 3)( 5,10, 8)( 6, 9, 7)(11,16,13)(12,15,14)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1,18, 4, 2,17, 3)( 5, 9, 8, 6,10, 7)(11,15,13,12,16,14)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 28] |
| Character table: |
2 2 1 2 2 1 2 2 2 2 2 2 1 1 1 2 1 1 1 2 2
3 3 2 1 3 2 1 3 1 3 1 1 2 2 2 1 2 2 2 3 3
1a 3a 2a 2b 6a 2c 6b 6c 3b 6d 6e 3c 3d 3e 6f 6g 6h 6i 3f 6j
2P 1a 3a 1a 1a 3a 1a 3f 3f 3f 3f 3b 3c 3d 3e 3b 3c 3d 3e 3b 3b
3P 1a 1a 2a 2b 2b 2c 2b 2c 1a 2a 2a 1a 1a 1a 2c 2b 2b 2b 1a 2b
5P 1a 3a 2a 2b 6a 2c 6j 6f 3f 6e 6d 3c 3d 3e 6c 6g 6h 6i 3b 6b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 1 -1
X.3 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 1 -1 1 1 1 1 1
X.4 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 -1
X.5 2 2 . -2 -2 . -2 . 2 . . -1 -1 -1 . 1 1 1 2 -2
X.6 2 2 . 2 2 . 2 . 2 . . -1 -1 -1 . -1 -1 -1 2 2
X.7 2 -1 . 2 -1 . 2 . 2 . . 2 -1 -1 . 2 -1 -1 2 2
X.8 2 -1 . -2 1 . -2 . 2 . . 2 -1 -1 . -2 1 1 2 -2
X.9 2 -1 . -2 1 . -2 . 2 . . -1 -1 2 . 1 1 -2 2 -2
X.10 2 -1 . -2 1 . -2 . 2 . . -1 2 -1 . 1 -2 1 2 -2
X.11 2 -1 . 2 -1 . 2 . 2 . . -1 -1 2 . -1 -1 2 2 2
X.12 2 -1 . 2 -1 . 2 . 2 . . -1 2 -1 . -1 2 -1 2 2
X.13 3 . -1 -3 . 1 A B -A -B -/B . . . /B . . . -/A /A
X.14 3 . -1 -3 . 1 /A /B -/A -/B -B . . . B . . . -A A
X.15 3 . -1 3 . -1 -/A -/B -/A -/B -B . . . -B . . . -A -A
X.16 3 . -1 3 . -1 -A -B -A -B -/B . . . -/B . . . -/A -/A
X.17 3 . 1 -3 . -1 A -B -A B /B . . . -/B . . . -/A /A
X.18 3 . 1 -3 . -1 /A -/B -/A /B B . . . -B . . . -A A
X.19 3 . 1 3 . 1 -/A /B -/A /B B . . . B . . . -A -A
X.20 3 . 1 3 . 1 -A B -A B /B . . . /B . . . -/A -/A
A = -3*E(3)
= (3-3*Sqrt(-3))/2 = -3b3
B = E(3)
= (-1+Sqrt(-3))/2 = b3
|