Normalized defining polynomial
\( x^{18} + 3 x^{16} - 3 x^{15} + 45 x^{14} - 60 x^{13} + 254 x^{12} - 198 x^{11} + 450 x^{10} - 400 x^{9} + 468 x^{8} - 534 x^{7} + 956 x^{6} - 774 x^{5} + 405 x^{4} - 138 x^{3} + 45 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-508698711308514601331703=-\,3^{24}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{26} a^{12} - \frac{2}{13} a^{11} + \frac{3}{26} a^{10} - \frac{1}{13} a^{9} - \frac{3}{26} a^{8} + \frac{3}{13} a^{7} + \frac{2}{13} a^{6} + \frac{7}{26} a^{5} - \frac{5}{13} a^{4} - \frac{5}{26} a^{3} + \frac{5}{13} a^{2} + \frac{7}{26} a - \frac{6}{13}$, $\frac{1}{104} a^{13} - \frac{1}{104} a^{12} + \frac{17}{104} a^{11} - \frac{19}{104} a^{10} + \frac{17}{104} a^{9} - \frac{3}{104} a^{8} + \frac{9}{104} a^{7} + \frac{19}{104} a^{6} + \frac{37}{104} a^{5} + \frac{43}{104} a^{4} - \frac{5}{104} a^{3} + \frac{11}{104} a^{2} + \frac{35}{104} a - \frac{49}{104}$, $\frac{1}{208} a^{14} - \frac{21}{104} a^{11} + \frac{1}{104} a^{10} + \frac{23}{104} a^{9} + \frac{1}{104} a^{8} + \frac{9}{52} a^{7} + \frac{6}{13} a^{6} - \frac{2}{13} a^{5} - \frac{5}{104} a^{4} + \frac{17}{104} a^{3} + \frac{47}{104} a^{2} - \frac{37}{104} a + \frac{3}{16}$, $\frac{1}{208} a^{15} - \frac{1}{104} a^{12} + \frac{25}{104} a^{11} - \frac{21}{104} a^{10} + \frac{1}{8} a^{9} + \frac{5}{52} a^{8} + \frac{3}{26} a^{7} - \frac{5}{13} a^{6} + \frac{31}{104} a^{5} + \frac{25}{104} a^{4} + \frac{51}{104} a^{3} + \frac{7}{104} a^{2} + \frac{7}{208} a + \frac{5}{26}$, $\frac{1}{191152} a^{16} + \frac{379}{191152} a^{15} + \frac{1}{11947} a^{14} + \frac{331}{95576} a^{13} - \frac{123}{47788} a^{12} + \frac{8009}{47788} a^{11} + \frac{7217}{47788} a^{10} + \frac{4661}{95576} a^{9} + \frac{6445}{47788} a^{8} + \frac{2463}{23894} a^{7} + \frac{10451}{95576} a^{6} - \frac{20411}{47788} a^{5} - \frac{19719}{47788} a^{4} - \frac{9869}{23894} a^{3} - \frac{81911}{191152} a^{2} - \frac{22235}{191152} a + \frac{6973}{23894}$, $\frac{1}{2780879296} a^{17} + \frac{3833}{2780879296} a^{16} + \frac{166905}{695219824} a^{15} - \frac{2071559}{2780879296} a^{14} - \frac{4605317}{1390439648} a^{13} + \frac{6298693}{1390439648} a^{12} + \frac{6180341}{347609912} a^{11} - \frac{252042831}{1390439648} a^{10} + \frac{159223221}{695219824} a^{9} - \frac{162112095}{695219824} a^{8} + \frac{64818553}{347609912} a^{7} - \frac{398590551}{1390439648} a^{6} - \frac{543304225}{1390439648} a^{5} + \frac{121440327}{347609912} a^{4} - \frac{44352703}{213913792} a^{3} - \frac{1364399973}{2780879296} a^{2} + \frac{15734112}{43451239} a - \frac{819081329}{2780879296}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8598.44783956 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.23.1 x3, \(\Q(\zeta_{9})^+\), 6.0.12167.1, 6.0.79827687.1, 6.0.79827687.2 x2, 9.3.6466042647.5 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.79827687.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |