Basic invariants
Dimension: | $2$ |
Group: | $S_3$ |
Conductor: | \(23\) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 3.1.23.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_3$ |
Parity: | odd |
Determinant: | 1.23.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.23.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{3} - x^{2} + 1 \)
|
The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 7 + 39\cdot 59 + 39\cdot 59^{2} + 36\cdot 59^{3} + 59^{4} +O(59^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 9 + 59 + 51\cdot 59^{2} + 39\cdot 59^{3} + 51\cdot 59^{4} +O(59^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 44 + 18\cdot 59 + 27\cdot 59^{2} + 41\cdot 59^{3} + 5\cdot 59^{4} +O(59^{5})\)
|
Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$3$ | $2$ | $(1,2)$ | $0$ | ✓ |
$2$ | $3$ | $(1,2,3)$ | $-1$ |
Additional information
This representation has the smallest conductor of all $2$-dimensional irreducible faithful Artin representations.