Properties

Label 18.0.408...243.1
Degree $18$
Signature $[0, 9]$
Discriminant $-4.089\times 10^{31}$
Root discriminant \(57.04\)
Ramified primes $3,7$
Class number $543$ (GRH)
Class group [543] (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 12691*x^9 + 40353607)
 
gp: K = bnfinit(y^18 - 12691*y^9 + 40353607, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 12691*x^9 + 40353607);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 12691*x^9 + 40353607)
 

\( x^{18} - 12691x^{9} + 40353607 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-40891490652933723328906846968243\) \(\medspace = -\,3^{45}\cdot 7^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(57.04\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{5/2}7^{2/3}\approx 57.042930691680226$
Ramified primes:   \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Gal(K/\Q) }$:  $18$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(189=3^{3}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{189}(128,·)$, $\chi_{189}(1,·)$, $\chi_{189}(2,·)$, $\chi_{189}(67,·)$, $\chi_{189}(4,·)$, $\chi_{189}(134,·)$, $\chi_{189}(71,·)$, $\chi_{189}(8,·)$, $\chi_{189}(130,·)$, $\chi_{189}(142,·)$, $\chi_{189}(79,·)$, $\chi_{189}(16,·)$, $\chi_{189}(158,·)$, $\chi_{189}(95,·)$, $\chi_{189}(32,·)$, $\chi_{189}(65,·)$, $\chi_{189}(64,·)$, $\chi_{189}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{256}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{7}a^{3}$, $\frac{1}{7}a^{4}$, $\frac{1}{7}a^{5}$, $\frac{1}{49}a^{6}$, $\frac{1}{49}a^{7}$, $\frac{1}{49}a^{8}$, $\frac{1}{343}a^{9}$, $\frac{1}{343}a^{10}$, $\frac{1}{2401}a^{11}-\frac{2}{7}a^{2}$, $\frac{1}{16807}a^{12}-\frac{2}{49}a^{3}$, $\frac{1}{16807}a^{13}-\frac{2}{49}a^{4}$, $\frac{1}{117649}a^{14}+\frac{12}{343}a^{5}$, $\frac{1}{823543}a^{15}+\frac{12}{2401}a^{6}$, $\frac{1}{823543}a^{16}+\frac{12}{2401}a^{7}$, $\frac{1}{5764801}a^{17}-\frac{37}{16807}a^{8}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{543}$, which has order $543$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{3}{823543} a^{15} + \frac{62}{2401} a^{6} \)  (order $18$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5}{823543}a^{15}+\frac{3}{16807}a^{12}-\frac{87}{2401}a^{6}-\frac{55}{49}a^{3}$, $\frac{8}{823543}a^{15}+\frac{1}{16807}a^{12}-\frac{149}{2401}a^{6}-\frac{16}{49}a^{3}$, $\frac{1}{5764801}a^{17}-\frac{5}{823543}a^{16}-\frac{32}{823543}a^{15}-\frac{3}{117649}a^{14}+\frac{1}{16807}a^{13}+\frac{2}{16807}a^{12}+\frac{3}{2401}a^{11}+\frac{1}{343}a^{10}-\frac{37}{16807}a^{8}+\frac{87}{2401}a^{7}+\frac{596}{2401}a^{6}+\frac{62}{343}a^{5}-\frac{16}{49}a^{4}-\frac{32}{49}a^{3}-\frac{55}{7}a^{2}-19a-2$, $\frac{19}{5764801}a^{17}+\frac{5}{823543}a^{16}-\frac{16}{823543}a^{15}+\frac{3}{117649}a^{14}+\frac{3}{16807}a^{13}+\frac{1}{16807}a^{12}-\frac{360}{16807}a^{8}-\frac{87}{2401}a^{7}+\frac{298}{2401}a^{6}-\frac{62}{343}a^{5}-\frac{55}{49}a^{4}-\frac{16}{49}a^{3}-1$, $\frac{18}{5764801}a^{17}+\frac{8}{823543}a^{16}+\frac{5}{823543}a^{15}-\frac{3}{16807}a^{13}-\frac{6}{16807}a^{12}-\frac{3}{2401}a^{11}+\frac{1}{343}a^{9}-\frac{323}{16807}a^{8}-\frac{149}{2401}a^{7}-\frac{87}{2401}a^{6}+\frac{55}{49}a^{4}+\frac{110}{49}a^{3}+\frac{55}{7}a^{2}-19$, $\frac{1}{5764801}a^{17}+\frac{8}{823543}a^{16}-\frac{13}{823543}a^{15}-\frac{5}{117649}a^{14}-\frac{8}{16807}a^{12}+\frac{1}{343}a^{10}+\frac{1}{343}a^{9}-\frac{37}{16807}a^{8}-\frac{149}{2401}a^{7}+\frac{236}{2401}a^{6}+\frac{87}{343}a^{5}+\frac{156}{49}a^{3}-18a-17$, $\frac{1}{5764801}a^{17}-\frac{3}{823543}a^{16}+\frac{5}{823543}a^{15}+\frac{2}{16807}a^{13}-\frac{6}{16807}a^{12}+\frac{1}{2401}a^{11}+\frac{1}{343}a^{9}-\frac{37}{16807}a^{8}+\frac{62}{2401}a^{7}-\frac{87}{2401}a^{6}-\frac{39}{49}a^{4}+\frac{110}{49}a^{3}-\frac{16}{7}a^{2}-19$, $\frac{1}{5764801}a^{17}-\frac{3}{823543}a^{16}-\frac{2}{823543}a^{15}+\frac{1}{16807}a^{12}+\frac{1}{2401}a^{11}-\frac{37}{16807}a^{8}+\frac{62}{2401}a^{7}+\frac{25}{2401}a^{6}-\frac{23}{49}a^{3}-\frac{16}{7}a^{2}-a+4$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4392158.29124 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 4392158.29124 \cdot 543}{18\cdot\sqrt{40891490652933723328906846968243}}\cr\approx \mathstrut & 0.316233337742 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 12691*x^9 + 40353607)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 12691*x^9 + 40353607, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 12691*x^9 + 40353607);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 12691*x^9 + 40353607);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{18}$ (as 18T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 9.9.3691950281939241.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $18$ R $18$ R $18$ ${\href{/padicField/13.9.0.1}{9} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{6}$ $18$ $18$ ${\href{/padicField/31.9.0.1}{9} }^{2}$ ${\href{/padicField/37.1.0.1}{1} }^{18}$ $18$ ${\href{/padicField/43.9.0.1}{9} }^{2}$ $18$ ${\href{/padicField/53.6.0.1}{6} }^{3}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $18$$18$$1$$45$
\(7\) Copy content Toggle raw display 7.9.6.2$x^{9} + 252 x^{6} - 2352 x^{3} + 5488$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$
7.9.6.2$x^{9} + 252 x^{6} - 2352 x^{3} + 5488$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$