sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(189, base_ring=CyclotomicField(2))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([1,0]))
pari: [g,chi] = znchar(Mod(134,189))
Basic properties
Modulus: | \(189\) | |
Conductor: | \(3\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(2\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | yes | |
Primitive: | no, induced from \(\chi_{3}(2,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 189.b
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q\) |
Fixed field: | \(\Q(\sqrt{-3}) \) |
Values on generators
\((29,136)\) → \((-1,1)\)
Values
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{189}(134,\cdot)) = \sum_{r\in \Z/189\Z} \chi_{189}(134,r) e\left(\frac{2r}{189}\right) = 0.0 \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{189}(134,\cdot),\chi_{189}(1,\cdot)) = \sum_{r\in \Z/189\Z} \chi_{189}(134,r) \chi_{189}(1,1-r) = -45 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{189}(134,·))
= \sum_{r \in \Z/189\Z}
\chi_{189}(134,r) e\left(\frac{1 r + 2 r^{-1}}{189}\right)
= 0.0 \)