Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $1$ | |
| Group : | $C_{18}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $1$ | |
| Generators: | (1,15,11,8,3,17,14,9,6,2,16,12,7,4,18,13,10,5) | |
| $|\Aut(F/K)|$: | $18$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 9: $C_9$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 6: $C_6$
Degree 9: $C_9$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 9, 9 $ | $1$ | $9$ | $( 1, 3, 6, 7,10,11,14,16,18)( 2, 4, 5, 8, 9,12,13,15,17)$ |
| $ 18 $ | $1$ | $18$ | $( 1, 4, 6, 8,10,12,14,15,18, 2, 3, 5, 7, 9,11,13,16,17)$ |
| $ 18 $ | $1$ | $18$ | $( 1, 5,10,13,18, 4, 7,12,16, 2, 6, 9,14,17, 3, 8,11,15)$ |
| $ 9, 9 $ | $1$ | $9$ | $( 1, 6,10,14,18, 3, 7,11,16)( 2, 5, 9,13,17, 4, 8,12,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 7,14)( 2, 8,13)( 3,10,16)( 4, 9,15)( 5,12,17)( 6,11,18)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1, 8,14, 2, 7,13)( 3, 9,16, 4,10,15)( 5,11,17, 6,12,18)$ |
| $ 18 $ | $1$ | $18$ | $( 1, 9,18, 8,16, 5,14, 4,11, 2,10,17, 7,15, 6,13, 3,12)$ |
| $ 9, 9 $ | $1$ | $9$ | $( 1,10,18, 7,16, 6,14, 3,11)( 2, 9,17, 8,15, 5,13, 4,12)$ |
| $ 9, 9 $ | $1$ | $9$ | $( 1,11, 3,14, 6,16, 7,18,10)( 2,12, 4,13, 5,15, 8,17, 9)$ |
| $ 18 $ | $1$ | $18$ | $( 1,12, 3,13, 6,15, 7,17,10, 2,11, 4,14, 5,16, 8,18, 9)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1,13, 7, 2,14, 8)( 3,15,10, 4,16, 9)( 5,18,12, 6,17,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,14, 7)( 2,13, 8)( 3,16,10)( 4,15, 9)( 5,17,12)( 6,18,11)$ |
| $ 18 $ | $1$ | $18$ | $( 1,15,11, 8, 3,17,14, 9, 6, 2,16,12, 7, 4,18,13,10, 5)$ |
| $ 9, 9 $ | $1$ | $9$ | $( 1,16,11, 7, 3,18,14,10, 6)( 2,15,12, 8, 4,17,13, 9, 5)$ |
| $ 18 $ | $1$ | $18$ | $( 1,17,16,13,11, 9, 7, 5, 3, 2,18,15,14,12,10, 8, 6, 4)$ |
| $ 9, 9 $ | $1$ | $9$ | $( 1,18,16,14,11,10, 7, 6, 3)( 2,17,15,13,12, 9, 8, 5, 4)$ |
Group invariants
| Order: | $18=2 \cdot 3^{2}$ | |
| Cyclic: | Yes | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [18, 2] |
| Character table: |
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1a 2a 9a 18a 18b 9b 3a 6a 18c 9c 9d 18d 6b 3b 18e 9e 18f 9f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1
X.3 1 1 A A /A /A 1 1 A A /A /A 1 1 A A /A /A
X.4 1 -1 A -A -/A /A 1 -1 -A A /A -/A -1 1 -A A -/A /A
X.5 1 1 /A /A A A 1 1 /A /A A A 1 1 /A /A A A
X.6 1 -1 /A -/A -A A 1 -1 -/A /A A -A -1 1 -/A /A -A A
X.7 1 1 B B /D /D A A C C /C /C /A /A D D /B /B
X.8 1 -1 B -B -/D /D A -A -C C /C -/C -/A /A -D D -/B /B
X.9 1 1 C C /B /B A A D D /D /D /A /A B B /C /C
X.10 1 -1 C -C -/B /B A -A -D D /D -/D -/A /A -B B -/C /C
X.11 1 1 D D /C /C A A B B /B /B /A /A C C /D /D
X.12 1 -1 D -D -/C /C A -A -B B /B -/B -/A /A -C C -/D /D
X.13 1 1 /D /D C C /A /A /B /B B B A A /C /C D D
X.14 1 -1 /D -/D -C C /A -/A -/B /B B -B -A A -/C /C -D D
X.15 1 1 /C /C B B /A /A /D /D D D A A /B /B C C
X.16 1 -1 /C -/C -B B /A -/A -/D /D D -D -A A -/B /B -C C
X.17 1 1 /B /B D D /A /A /C /C C C A A /D /D B B
X.18 1 -1 /B -/B -D D /A -/A -/C /C C -C -A A -/D /D -B B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(9)^2
C = -E(9)^2-E(9)^5
D = E(9)^5
|