Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} - 20 x^{15} + 57 x^{14} - 102 x^{13} + 159 x^{12} - 312 x^{11} + 567 x^{10} + \cdots + 1 \)
Invariants
Degree: | $18$ |
| |
Signature: | $[0, 9]$ |
| |
Discriminant: |
\(-2279403313291670831424\)
\(\medspace = -\,2^{6}\cdot 3^{21}\cdot 23^{7}\)
|
| |
Root discriminant: | \(15.37\) |
| |
Galois root discriminant: | not computed | ||
Ramified primes: |
\(2\), \(3\), \(23\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-69}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2330038077427}a^{17}-\frac{890305655253}{2330038077427}a^{16}-\frac{507172759119}{2330038077427}a^{15}+\frac{989445529394}{2330038077427}a^{14}-\frac{603625509136}{2330038077427}a^{13}-\frac{1075849548136}{2330038077427}a^{12}+\frac{25905838358}{2330038077427}a^{11}-\frac{499363146033}{2330038077427}a^{10}-\frac{336148636222}{2330038077427}a^{9}+\frac{1009275826339}{2330038077427}a^{8}-\frac{1155682459554}{2330038077427}a^{7}+\frac{112293079559}{2330038077427}a^{6}-\frac{440544840590}{2330038077427}a^{5}-\frac{769059449896}{2330038077427}a^{4}+\frac{824013542400}{2330038077427}a^{3}+\frac{363420142166}{2330038077427}a^{2}-\frac{185010781437}{2330038077427}a+\frac{207865774968}{2330038077427}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $8$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{45606205755822}{2330038077427}a^{17}-\frac{108570314278423}{2330038077427}a^{16}+\frac{207081852013542}{2330038077427}a^{15}-\frac{784783368109319}{2330038077427}a^{14}+\frac{21\cdots 17}{2330038077427}a^{13}-\frac{33\cdots 98}{2330038077427}a^{12}+\frac{51\cdots 59}{2330038077427}a^{11}-\frac{11\cdots 97}{2330038077427}a^{10}+\frac{19\cdots 19}{2330038077427}a^{9}-\frac{21\cdots 38}{2330038077427}a^{8}+\frac{25\cdots 54}{2330038077427}a^{7}-\frac{36\cdots 24}{2330038077427}a^{6}+\frac{40\cdots 80}{2330038077427}a^{5}-\frac{26\cdots 39}{2330038077427}a^{4}+\frac{96\cdots 99}{2330038077427}a^{3}-\frac{19\cdots 88}{2330038077427}a^{2}+\frac{317878887335128}{2330038077427}a-\frac{73269471697448}{2330038077427}$, $\frac{20979233420255}{2330038077427}a^{17}-\frac{44943208872073}{2330038077427}a^{16}+\frac{86023499547461}{2330038077427}a^{15}-\frac{343664734815309}{2330038077427}a^{14}+\frac{896830925187906}{2330038077427}a^{13}-\frac{13\cdots 35}{2330038077427}a^{12}+\frac{21\cdots 49}{2330038077427}a^{11}-\frac{46\cdots 16}{2330038077427}a^{10}+\frac{77\cdots 77}{2330038077427}a^{9}-\frac{84\cdots 68}{2330038077427}a^{8}+\frac{10\cdots 75}{2330038077427}a^{7}-\frac{15\cdots 29}{2330038077427}a^{6}+\frac{15\cdots 01}{2330038077427}a^{5}-\frac{94\cdots 80}{2330038077427}a^{4}+\frac{31\cdots 97}{2330038077427}a^{3}-\frac{612198455034958}{2330038077427}a^{2}+\frac{109402253996095}{2330038077427}a-\frac{21871170891314}{2330038077427}$, $\frac{21450046886810}{2330038077427}a^{17}-\frac{53161886127370}{2330038077427}a^{16}+\frac{100035529278509}{2330038077427}a^{15}-\frac{375008795594008}{2330038077427}a^{14}+\frac{10\cdots 31}{2330038077427}a^{13}-\frac{16\cdots 29}{2330038077427}a^{12}+\frac{25\cdots 40}{2330038077427}a^{11}-\frac{53\cdots 02}{2330038077427}a^{10}+\frac{93\cdots 39}{2330038077427}a^{9}-\frac{10\cdots 71}{2330038077427}a^{8}+\frac{12\cdots 46}{2330038077427}a^{7}-\frac{17\cdots 61}{2330038077427}a^{6}+\frac{19\cdots 65}{2330038077427}a^{5}-\frac{13\cdots 47}{2330038077427}a^{4}+\frac{47\cdots 62}{2330038077427}a^{3}-\frac{934450639581130}{2330038077427}a^{2}+\frac{156585506527653}{2330038077427}a-\frac{35256222084568}{2330038077427}$, $\frac{32381438369287}{2330038077427}a^{17}-\frac{77281760939081}{2330038077427}a^{16}+\frac{146999154139884}{2330038077427}a^{15}-\frac{557199663586381}{2330038077427}a^{14}+\frac{15\cdots 49}{2330038077427}a^{13}-\frac{23\cdots 27}{2330038077427}a^{12}+\frac{36\cdots 23}{2330038077427}a^{11}-\frac{78\cdots 62}{2330038077427}a^{10}+\frac{13\cdots 42}{2330038077427}a^{9}-\frac{15\cdots 16}{2330038077427}a^{8}+\frac{18\cdots 24}{2330038077427}a^{7}-\frac{26\cdots 65}{2330038077427}a^{6}+\frac{28\cdots 66}{2330038077427}a^{5}-\frac{18\cdots 16}{2330038077427}a^{4}+\frac{67\cdots 67}{2330038077427}a^{3}-\frac{13\cdots 96}{2330038077427}a^{2}+\frac{236507219186705}{2330038077427}a-\frac{55940654473832}{2330038077427}$, $\frac{48661969044961}{2330038077427}a^{17}-\frac{107303190582679}{2330038077427}a^{16}+\frac{208120587420558}{2330038077427}a^{15}-\frac{810695348221370}{2330038077427}a^{14}+\frac{21\cdots 93}{2330038077427}a^{13}-\frac{32\cdots 99}{2330038077427}a^{12}+\frac{51\cdots 08}{2330038077427}a^{11}-\frac{11\cdots 42}{2330038077427}a^{10}+\frac{18\cdots 89}{2330038077427}a^{9}-\frac{21\cdots 39}{2330038077427}a^{8}+\frac{25\cdots 17}{2330038077427}a^{7}-\frac{36\cdots 07}{2330038077427}a^{6}+\frac{38\cdots 47}{2330038077427}a^{5}-\frac{24\cdots 63}{2330038077427}a^{4}+\frac{88\cdots 33}{2330038077427}a^{3}-\frac{17\cdots 36}{2330038077427}a^{2}+\frac{299301314839599}{2330038077427}a-\frac{66011839338328}{2330038077427}$, $\frac{19482469875663}{2330038077427}a^{17}-\frac{46538931829431}{2330038077427}a^{16}+\frac{89107701115247}{2330038077427}a^{15}-\frac{335844579283705}{2330038077427}a^{14}+\frac{906959851042797}{2330038077427}a^{13}-\frac{14\cdots 67}{2330038077427}a^{12}+\frac{22\cdots 30}{2330038077427}a^{11}-\frac{47\cdots 11}{2330038077427}a^{10}+\frac{81\cdots 83}{2330038077427}a^{9}-\frac{94\cdots 42}{2330038077427}a^{8}+\frac{11\cdots 88}{2330038077427}a^{7}-\frac{15\cdots 31}{2330038077427}a^{6}+\frac{17\cdots 25}{2330038077427}a^{5}-\frac{11\cdots 09}{2330038077427}a^{4}+\frac{41\cdots 59}{2330038077427}a^{3}-\frac{818625931060889}{2330038077427}a^{2}+\frac{128973523113553}{2330038077427}a-\frac{29358061568097}{2330038077427}$, $\frac{15636129207595}{2330038077427}a^{17}-\frac{44256996502862}{2330038077427}a^{16}+\frac{82683188036755}{2330038077427}a^{15}-\frac{292035668111975}{2330038077427}a^{14}+\frac{829221345206712}{2330038077427}a^{13}-\frac{13\cdots 75}{2330038077427}a^{12}+\frac{21\cdots 69}{2330038077427}a^{11}-\frac{43\cdots 07}{2330038077427}a^{10}+\frac{78\cdots 06}{2330038077427}a^{9}-\frac{94\cdots 94}{2330038077427}a^{8}+\frac{10\cdots 57}{2330038077427}a^{7}-\frac{15\cdots 27}{2330038077427}a^{6}+\frac{17\cdots 45}{2330038077427}a^{5}-\frac{12\cdots 94}{2330038077427}a^{4}+\frac{47\cdots 76}{2330038077427}a^{3}-\frac{970988299158366}{2330038077427}a^{2}+\frac{162555435826552}{2330038077427}a-\frac{39066311898769}{2330038077427}$, $\frac{27490718736208}{2330038077427}a^{17}-\frac{67162011181893}{2330038077427}a^{16}+\frac{128729312584916}{2330038077427}a^{15}-\frac{479652654487281}{2330038077427}a^{14}+\frac{13\cdots 71}{2330038077427}a^{13}-\frac{20\cdots 01}{2330038077427}a^{12}+\frac{32\cdots 13}{2330038077427}a^{11}-\frac{68\cdots 56}{2330038077427}a^{10}+\frac{11\cdots 93}{2330038077427}a^{9}-\frac{13\cdots 11}{2330038077427}a^{8}+\frac{16\cdots 02}{2330038077427}a^{7}-\frac{23\cdots 45}{2330038077427}a^{6}+\frac{25\cdots 86}{2330038077427}a^{5}-\frac{17\cdots 00}{2330038077427}a^{4}+\frac{64\cdots 71}{2330038077427}a^{3}-\frac{13\cdots 21}{2330038077427}a^{2}+\frac{222638429375699}{2330038077427}a-\frac{52280041970664}{2330038077427}$
|
| |
Regulator: | \( 1034.74957973 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 1034.74957973 \cdot 2}{2\cdot\sqrt{2279403313291670831424}}\cr\approx \mathstrut & 0.330783232022 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3\wr C_3.S_3^2$ (as 18T734):
A solvable group of order 55296 |
The 120 conjugacy class representatives for $C_2^3\wr C_3.S_3^2$ |
Character table for $C_2^3\wr C_3.S_3^2$ |
Intermediate fields
3.1.23.1, 9.1.239483061.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 18.2.84422344936728549312.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.6.0.1}{6} }$ | R | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.1.0a1.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |
2.3.2.6a2.1 | $x^{6} + 4 x^{4} + 2 x^{3} + 3 x^{2} + 4 x + 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $$[2, 2, 2]^{3}$$ | |
2.6.1.0a1.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
\(3\)
| 3.3.6.21a8.1 | $x^{18} + 12 x^{16} + 6 x^{15} + 60 x^{14} + 60 x^{13} + 175 x^{12} + 240 x^{11} + 360 x^{10} + 500 x^{9} + 555 x^{8} + 600 x^{7} + 577 x^{6} + 438 x^{5} + 336 x^{4} + 193 x^{3} + 87 x^{2} + 45 x + 10$ | $6$ | $3$ | $21$ | 18T42 | not computed |
\(23\)
| $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
23.4.1.0a1.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
23.1.4.3a1.1 | $x^{4} + 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
23.4.2.4a1.2 | $x^{8} + 6 x^{6} + 38 x^{5} + 19 x^{4} + 114 x^{3} + 391 x^{2} + 190 x + 48$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |