Properties

Label 18T734
Order \(55296\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $734$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,17,14,3,11,2,15,18,13,4,12)(5,7,9)(6,8,10), (3,17)(4,18)(5,13,9,15,8,12,6,14,10,16,7,11), (1,9,16,17,6,14,2,10,15,18,5,13)(3,8,12)(4,7,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$ x 2
8:  $C_2^3$
12:  $D_{6}$ x 6
24:  $S_4$, $S_3 \times C_2^2$ x 2
36:  $S_3^2$
48:  $S_4\times C_2$ x 3
72:  12T37
96:  12T48
108:  $C_3^2 : D_{6} $
144:  12T83
216:  18T94
288:  18T111
432:  18T152
864:  18T228
6912:  12T268
13824:  18T587
27648:  18T659

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $C_3^2 : D_{6} $

Low degree siblings

18T734 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 120 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $55296=2^{11} \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.