Normalized defining polynomial
\( x^{18} + 3x^{12} + 543x^{6} + 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-14281868906496000000000000\)
\(\medspace = -\,2^{24}\cdot 3^{20}\cdot 5^{12}\)
|
| |
| Root discriminant: | \(24.97\) |
| |
| Galois root discriminant: | $2^{4/3}3^{7/6}5^{2/3}\approx 26.545737424498032$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-1}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{9}a^{6}+\frac{4}{9}$, $\frac{1}{9}a^{7}+\frac{4}{9}a$, $\frac{1}{9}a^{8}+\frac{4}{9}a^{2}$, $\frac{1}{18}a^{9}-\frac{1}{18}a^{6}-\frac{5}{18}a^{3}+\frac{5}{18}$, $\frac{1}{18}a^{10}-\frac{1}{18}a^{7}-\frac{5}{18}a^{4}+\frac{5}{18}a$, $\frac{1}{18}a^{11}-\frac{1}{18}a^{8}-\frac{5}{18}a^{5}+\frac{5}{18}a^{2}$, $\frac{1}{162}a^{12}+\frac{4}{81}a^{6}-\frac{65}{162}$, $\frac{1}{162}a^{13}+\frac{4}{81}a^{7}-\frac{65}{162}a$, $\frac{1}{162}a^{14}+\frac{4}{81}a^{8}-\frac{65}{162}a^{2}$, $\frac{1}{162}a^{15}-\frac{1}{162}a^{9}-\frac{1}{18}a^{6}-\frac{10}{81}a^{3}+\frac{5}{18}$, $\frac{1}{486}a^{16}-\frac{1}{486}a^{14}+\frac{1}{486}a^{12}-\frac{5}{243}a^{10}+\frac{5}{243}a^{8}-\frac{5}{243}a^{6}+\frac{187}{486}a^{4}-\frac{187}{486}a^{2}+\frac{187}{486}$, $\frac{1}{486}a^{17}-\frac{1}{486}a^{15}+\frac{1}{486}a^{13}-\frac{5}{243}a^{11}+\frac{5}{243}a^{9}-\frac{5}{243}a^{7}+\frac{187}{486}a^{5}-\frac{187}{486}a^{3}+\frac{187}{486}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}$, which has order $3$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( \frac{7}{162} a^{15} + \frac{10}{81} a^{9} + \frac{3775}{162} a^{3} \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{7}{162}a^{16}+\frac{10}{81}a^{10}+\frac{3775}{162}a^{4}$, $\frac{5}{18}a^{17}-\frac{1}{81}a^{14}+\frac{5}{6}a^{11}-\frac{7}{162}a^{8}+\frac{1358}{9}a^{5}-\frac{1049}{162}a^{2}+1$, $\frac{5}{18}a^{17}+\frac{1}{81}a^{14}+\frac{5}{6}a^{11}+\frac{7}{162}a^{8}+\frac{1358}{9}a^{5}+\frac{1049}{162}a^{2}-1$, $\frac{29}{486}a^{16}-\frac{4}{243}a^{14}-\frac{1}{486}a^{12}+\frac{44}{243}a^{10}-\frac{14}{243}a^{8}+\frac{5}{243}a^{6}+\frac{15683}{486}a^{4}-\frac{2179}{243}a^{2}-\frac{673}{486}$, $\frac{187}{486}a^{17}+\frac{26}{243}a^{16}+\frac{23}{486}a^{15}+\frac{4}{243}a^{14}-\frac{1}{243}a^{13}-\frac{1}{243}a^{12}+\frac{280}{243}a^{11}+\frac{155}{486}a^{10}+\frac{67}{486}a^{9}+\frac{14}{243}a^{8}-\frac{7}{486}a^{7}-\frac{7}{486}a^{6}+\frac{101551}{486}a^{5}+\frac{28219}{486}a^{4}+\frac{6268}{243}a^{3}+\frac{2179}{243}a^{2}-\frac{1211}{486}a-\frac{725}{486}$, $\frac{1}{6}a^{17}+\frac{1}{162}a^{14}+\frac{1}{2}a^{11}-\frac{1}{162}a^{8}+\frac{271}{3}a^{5}+\frac{233}{81}a^{2}$, $\frac{83}{486}a^{17}-\frac{29}{486}a^{15}-\frac{2}{243}a^{13}+\frac{125}{243}a^{11}-\frac{44}{243}a^{9}-\frac{7}{243}a^{7}+\frac{45113}{486}a^{5}-\frac{15683}{486}a^{3}-\frac{1211}{243}a$, $\frac{1}{6}a^{17}+\frac{1}{9}a^{16}+\frac{7}{162}a^{15}+\frac{1}{54}a^{14}+\frac{1}{162}a^{13}+\frac{1}{2}a^{11}+\frac{1}{3}a^{10}+\frac{10}{81}a^{9}+\frac{5}{54}a^{8}-\frac{5}{81}a^{7}+\frac{1}{9}a^{6}+\frac{271}{3}a^{5}+\frac{545}{9}a^{4}+\frac{3775}{162}a^{3}+\frac{272}{27}a^{2}+\frac{511}{162}a+\frac{4}{9}$
|
| |
| Regulator: | \( 314523.34710628784 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 314523.34710628784 \cdot 3}{4\cdot\sqrt{14281868906496000000000000}}\cr\approx \mathstrut & 0.952665518120135 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.675.1, 3.1.108.1, 3.1.2700.1, 3.1.300.1, 6.0.186624.1, 6.0.29160000.1, 6.0.116640000.1, 6.0.1440000.1, 9.1.59049000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.2.42845606719488000000000000.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{9}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.8a1.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $$[2]_{3}^{2}$$ |
| 2.2.6.16a1.5 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 143 x^{6} + 132 x^{5} + 102 x^{4} + 64 x^{3} + 33 x^{2} + 12 x + 5$ | $6$ | $2$ | $16$ | $D_6$ | $$[2]_{3}^{2}$$ | |
|
\(3\)
| 3.2.3.6a2.1 | $x^{6} + 6 x^{5} + 18 x^{4} + 32 x^{3} + 39 x^{2} + 30 x + 17$ | $3$ | $2$ | $6$ | $D_{6}$ | $$[\frac{3}{2}]_{2}^{2}$$ |
| 3.2.6.14a1.3 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2624 x^{6} + 3264 x^{5} + 3123 x^{4} + 2252 x^{3} + 1176 x^{2} + 408 x + 79$ | $6$ | $2$ | $14$ | $D_6$ | $$[\frac{3}{2}]_{2}^{2}$$ | |
|
\(5\)
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |