Properties

Label 18.0.126...499.3
Degree $18$
Signature $[0, 9]$
Discriminant $-1.261\times 10^{33}$
Root discriminant \(69.01\)
Ramified primes $3,7,19$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $S_3 \times C_3$ (as 18T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 - 24*x^16 + 184*x^15 + 279*x^14 - 2850*x^13 + 262*x^12 + 16494*x^11 + 2925*x^10 - 94040*x^9 + 73407*x^8 + 46704*x^7 + 266424*x^6 - 773052*x^5 + 255156*x^4 + 815050*x^3 - 318036*x^2 - 678846*x + 509627)
 
Copy content gp:K = bnfinit(y^18 - 6*y^17 - 24*y^16 + 184*y^15 + 279*y^14 - 2850*y^13 + 262*y^12 + 16494*y^11 + 2925*y^10 - 94040*y^9 + 73407*y^8 + 46704*y^7 + 266424*y^6 - 773052*y^5 + 255156*y^4 + 815050*y^3 - 318036*y^2 - 678846*y + 509627, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 - 24*x^16 + 184*x^15 + 279*x^14 - 2850*x^13 + 262*x^12 + 16494*x^11 + 2925*x^10 - 94040*x^9 + 73407*x^8 + 46704*x^7 + 266424*x^6 - 773052*x^5 + 255156*x^4 + 815050*x^3 - 318036*x^2 - 678846*x + 509627);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 6*x^17 - 24*x^16 + 184*x^15 + 279*x^14 - 2850*x^13 + 262*x^12 + 16494*x^11 + 2925*x^10 - 94040*x^9 + 73407*x^8 + 46704*x^7 + 266424*x^6 - 773052*x^5 + 255156*x^4 + 815050*x^3 - 318036*x^2 - 678846*x + 509627)
 

\( x^{18} - 6 x^{17} - 24 x^{16} + 184 x^{15} + 279 x^{14} - 2850 x^{13} + 262 x^{12} + 16494 x^{11} + \cdots + 509627 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 9]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-1261446981901370189638661902928499\) \(\medspace = -\,3^{24}\cdot 7^{12}\cdot 19^{9}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(69.01\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{4/3}7^{2/3}19^{1/2}\approx 69.01399479708432$
Ramified primes:   \(3\), \(7\), \(19\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-19}) \)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_3\times S_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  6.0.16468459.1

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{10}a^{12}-\frac{1}{10}a^{10}-\frac{1}{10}a^{9}+\frac{3}{10}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}-\frac{1}{2}a^{5}+\frac{3}{10}a^{4}-\frac{3}{10}a^{3}-\frac{3}{10}$, $\frac{1}{10}a^{13}-\frac{1}{10}a^{11}-\frac{1}{10}a^{10}-\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{3}{10}a^{7}-\frac{1}{2}a^{6}-\frac{1}{5}a^{5}+\frac{1}{5}a^{4}-\frac{3}{10}a-\frac{1}{2}$, $\frac{1}{10}a^{14}-\frac{1}{10}a^{11}+\frac{1}{5}a^{10}+\frac{1}{10}a^{9}+\frac{1}{10}a^{8}-\frac{3}{10}a^{7}+\frac{1}{10}a^{6}+\frac{1}{5}a^{5}+\frac{3}{10}a^{4}-\frac{3}{10}a^{3}-\frac{3}{10}a^{2}-\frac{3}{10}$, $\frac{1}{100}a^{15}-\frac{3}{100}a^{14}+\frac{3}{100}a^{13}-\frac{1}{25}a^{12}-\frac{2}{25}a^{11}+\frac{3}{20}a^{10}-\frac{1}{4}a^{9}-\frac{29}{100}a^{8}+\frac{3}{100}a^{7}-\frac{1}{2}a^{6}-\frac{1}{25}a^{5}+\frac{1}{4}a^{4}+\frac{1}{20}a^{3}+\frac{19}{100}a^{2}+\frac{9}{50}a-\frac{7}{100}$, $\frac{1}{8300}a^{16}+\frac{3}{830}a^{15}+\frac{117}{4150}a^{14}-\frac{73}{1660}a^{13}+\frac{1}{166}a^{12}-\frac{69}{8300}a^{11}+\frac{10}{83}a^{10}-\frac{336}{2075}a^{9}+\frac{1813}{4150}a^{8}-\frac{2891}{8300}a^{7}+\frac{373}{4150}a^{6}-\frac{1277}{8300}a^{5}-\frac{183}{830}a^{4}-\frac{969}{2075}a^{3}-\frac{139}{1660}a^{2}-\frac{3333}{8300}a+\frac{2209}{8300}$, $\frac{1}{81\cdots 00}a^{17}-\frac{70\cdots 97}{16\cdots 60}a^{16}-\frac{30\cdots 09}{81\cdots 00}a^{15}+\frac{87\cdots 16}{20\cdots 75}a^{14}-\frac{14\cdots 27}{40\cdots 50}a^{13}-\frac{30\cdots 47}{81\cdots 00}a^{12}-\frac{15\cdots 81}{81\cdots 00}a^{11}-\frac{16\cdots 19}{81\cdots 00}a^{10}+\frac{12\cdots 21}{81\cdots 00}a^{9}-\frac{97\cdots 81}{20\cdots 75}a^{8}-\frac{13\cdots 49}{40\cdots 50}a^{7}+\frac{28\cdots 43}{81\cdots 00}a^{6}+\frac{66\cdots 67}{81\cdots 00}a^{5}-\frac{32\cdots 21}{81\cdots 00}a^{4}-\frac{16\cdots 78}{81\cdots 03}a^{3}+\frac{52\cdots 49}{16\cdots 60}a^{2}+\frac{29\cdots 63}{81\cdots 30}a+\frac{15\cdots 93}{40\cdots 50}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{3}$, which has order $3$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{3}$, which has order $3$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $8$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{49\cdots 08}{81\cdots 03}a^{17}-\frac{34\cdots 37}{81\cdots 03}a^{16}-\frac{83\cdots 60}{81\cdots 03}a^{15}+\frac{99\cdots 52}{81\cdots 03}a^{14}+\frac{17\cdots 80}{81\cdots 03}a^{13}-\frac{14\cdots 28}{81\cdots 03}a^{12}+\frac{21\cdots 84}{81\cdots 03}a^{11}+\frac{73\cdots 42}{81\cdots 03}a^{10}-\frac{13\cdots 48}{81\cdots 03}a^{9}-\frac{46\cdots 98}{81\cdots 03}a^{8}+\frac{11\cdots 12}{81\cdots 03}a^{7}+\frac{80\cdots 08}{81\cdots 03}a^{6}+\frac{43\cdots 84}{81\cdots 03}a^{5}-\frac{62\cdots 41}{81\cdots 03}a^{4}+\frac{31\cdots 92}{81\cdots 03}a^{3}+\frac{65\cdots 14}{81\cdots 03}a^{2}-\frac{71\cdots 72}{81\cdots 03}a-\frac{22\cdots 39}{81\cdots 03}$, $\frac{49\cdots 08}{81\cdots 03}a^{17}-\frac{34\cdots 37}{81\cdots 03}a^{16}-\frac{83\cdots 60}{81\cdots 03}a^{15}+\frac{99\cdots 52}{81\cdots 03}a^{14}+\frac{17\cdots 80}{81\cdots 03}a^{13}-\frac{14\cdots 28}{81\cdots 03}a^{12}+\frac{21\cdots 84}{81\cdots 03}a^{11}+\frac{73\cdots 42}{81\cdots 03}a^{10}-\frac{13\cdots 48}{81\cdots 03}a^{9}-\frac{46\cdots 98}{81\cdots 03}a^{8}+\frac{11\cdots 12}{81\cdots 03}a^{7}+\frac{80\cdots 08}{81\cdots 03}a^{6}+\frac{43\cdots 84}{81\cdots 03}a^{5}-\frac{62\cdots 41}{81\cdots 03}a^{4}+\frac{31\cdots 92}{81\cdots 03}a^{3}+\frac{65\cdots 14}{81\cdots 03}a^{2}-\frac{71\cdots 72}{81\cdots 03}a+\frac{59\cdots 64}{81\cdots 03}$, $\frac{17\cdots 43}{81\cdots 00}a^{17}-\frac{16\cdots 13}{81\cdots 30}a^{16}-\frac{24\cdots 59}{40\cdots 50}a^{15}+\frac{90\cdots 71}{16\cdots 60}a^{14}-\frac{70\cdots 75}{81\cdots 03}a^{13}-\frac{60\cdots 57}{81\cdots 00}a^{12}+\frac{19\cdots 49}{81\cdots 30}a^{11}+\frac{39\cdots 02}{20\cdots 75}a^{10}-\frac{56\cdots 41}{40\cdots 50}a^{9}-\frac{42\cdots 73}{81\cdots 00}a^{8}+\frac{34\cdots 19}{40\cdots 50}a^{7}-\frac{10\cdots 21}{81\cdots 00}a^{6}+\frac{30\cdots 07}{81\cdots 30}a^{5}+\frac{35\cdots 01}{40\cdots 50}a^{4}-\frac{12\cdots 01}{16\cdots 60}a^{3}-\frac{44\cdots 59}{81\cdots 00}a^{2}+\frac{90\cdots 37}{81\cdots 00}a-\frac{21\cdots 13}{40\cdots 15}$, $\frac{22\cdots 07}{81\cdots 00}a^{17}-\frac{65\cdots 37}{81\cdots 30}a^{16}-\frac{43\cdots 91}{40\cdots 50}a^{15}+\frac{39\cdots 79}{16\cdots 60}a^{14}+\frac{16\cdots 55}{81\cdots 03}a^{13}-\frac{28\cdots 93}{81\cdots 00}a^{12}-\frac{16\cdots 99}{81\cdots 30}a^{11}+\frac{30\cdots 73}{20\cdots 75}a^{10}+\frac{54\cdots 41}{40\cdots 50}a^{9}-\frac{13\cdots 77}{81\cdots 00}a^{8}-\frac{17\cdots 69}{40\cdots 50}a^{7}-\frac{36\cdots 29}{81\cdots 00}a^{6}+\frac{71\cdots 93}{81\cdots 30}a^{5}+\frac{58\cdots 99}{40\cdots 50}a^{4}-\frac{11\cdots 49}{16\cdots 60}a^{3}-\frac{11\cdots 91}{81\cdots 00}a^{2}+\frac{32\cdots 13}{81\cdots 00}a+\frac{31\cdots 23}{40\cdots 15}$, $\frac{10\cdots 47}{81\cdots 00}a^{17}-\frac{22\cdots 47}{40\cdots 50}a^{16}-\frac{16\cdots 67}{40\cdots 50}a^{15}+\frac{28\cdots 89}{16\cdots 60}a^{14}+\frac{26\cdots 67}{40\cdots 50}a^{13}-\frac{44\cdots 53}{16\cdots 60}a^{12}-\frac{17\cdots 69}{40\cdots 50}a^{11}+\frac{65\cdots 31}{40\cdots 50}a^{10}+\frac{12\cdots 99}{40\cdots 50}a^{9}-\frac{66\cdots 23}{81\cdots 00}a^{8}-\frac{22\cdots 96}{40\cdots 15}a^{7}+\frac{24\cdots 87}{81\cdots 00}a^{6}+\frac{85\cdots 19}{20\cdots 75}a^{5}-\frac{13\cdots 21}{40\cdots 50}a^{4}-\frac{41\cdots 11}{81\cdots 00}a^{3}+\frac{37\cdots 51}{81\cdots 00}a^{2}+\frac{57\cdots 59}{81\cdots 00}a-\frac{24\cdots 21}{40\cdots 50}$, $\frac{20\cdots 89}{40\cdots 50}a^{17}-\frac{71\cdots 93}{40\cdots 50}a^{16}-\frac{36\cdots 33}{20\cdots 75}a^{15}+\frac{11\cdots 67}{20\cdots 75}a^{14}+\frac{13\cdots 79}{40\cdots 50}a^{13}-\frac{17\cdots 79}{20\cdots 75}a^{12}-\frac{55\cdots 91}{20\cdots 75}a^{11}+\frac{20\cdots 49}{40\cdots 50}a^{10}+\frac{73\cdots 11}{40\cdots 50}a^{9}-\frac{87\cdots 69}{40\cdots 50}a^{8}-\frac{20\cdots 49}{40\cdots 50}a^{7}-\frac{10\cdots 73}{20\cdots 75}a^{6}+\frac{62\cdots 19}{40\cdots 50}a^{5}+\frac{25\cdots 71}{40\cdots 50}a^{4}-\frac{12\cdots 17}{40\cdots 50}a^{3}-\frac{64\cdots 61}{81\cdots 30}a^{2}+\frac{83\cdots 87}{20\cdots 75}a+\frac{60\cdots 91}{20\cdots 75}$, $\frac{19\cdots 81}{81\cdots 00}a^{17}-\frac{27\cdots 29}{40\cdots 15}a^{16}-\frac{14\cdots 13}{20\cdots 75}a^{15}+\frac{14\cdots 03}{81\cdots 00}a^{14}+\frac{19\cdots 03}{20\cdots 75}a^{13}-\frac{46\cdots 29}{16\cdots 60}a^{12}-\frac{87\cdots 83}{20\cdots 75}a^{11}+\frac{50\cdots 13}{40\cdots 50}a^{10}+\frac{11\cdots 53}{40\cdots 50}a^{9}-\frac{65\cdots 97}{81\cdots 00}a^{8}+\frac{16\cdots 89}{40\cdots 50}a^{7}-\frac{83\cdots 97}{81\cdots 00}a^{6}+\frac{10\cdots 71}{20\cdots 75}a^{5}-\frac{29\cdots 33}{40\cdots 50}a^{4}+\frac{50\cdots 61}{16\cdots 60}a^{3}-\frac{42\cdots 57}{81\cdots 00}a^{2}+\frac{26\cdots 11}{81\cdots 00}a-\frac{11\cdots 89}{40\cdots 50}$, $\frac{15\cdots 26}{20\cdots 75}a^{17}-\frac{30\cdots 74}{40\cdots 15}a^{16}+\frac{17\cdots 16}{20\cdots 75}a^{15}+\frac{38\cdots 84}{20\cdots 75}a^{14}-\frac{72\cdots 74}{20\cdots 75}a^{13}-\frac{44\cdots 67}{20\cdots 75}a^{12}+\frac{15\cdots 44}{20\cdots 75}a^{11}+\frac{48\cdots 91}{20\cdots 75}a^{10}-\frac{25\cdots 44}{20\cdots 75}a^{9}-\frac{79\cdots 24}{20\cdots 75}a^{8}+\frac{47\cdots 32}{20\cdots 75}a^{7}+\frac{64\cdots 33}{20\cdots 75}a^{6}-\frac{76\cdots 28}{20\cdots 75}a^{5}-\frac{91\cdots 91}{20\cdots 75}a^{4}+\frac{30\cdots 88}{40\cdots 15}a^{3}+\frac{10\cdots 48}{40\cdots 15}a^{2}-\frac{33\cdots 76}{40\cdots 15}a+\frac{72\cdots 76}{20\cdots 75}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 283548193.676 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 283548193.676 \cdot 3}{2\cdot\sqrt{1261446981901370189638661902928499}}\cr\approx \mathstrut & 0.182768967430 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 - 24*x^16 + 184*x^15 + 279*x^14 - 2850*x^13 + 262*x^12 + 16494*x^11 + 2925*x^10 - 94040*x^9 + 73407*x^8 + 46704*x^7 + 266424*x^6 - 773052*x^5 + 255156*x^4 + 815050*x^3 - 318036*x^2 - 678846*x + 509627) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 6*x^17 - 24*x^16 + 184*x^15 + 279*x^14 - 2850*x^13 + 262*x^12 + 16494*x^11 + 2925*x^10 - 94040*x^9 + 73407*x^8 + 46704*x^7 + 266424*x^6 - 773052*x^5 + 255156*x^4 + 815050*x^3 - 318036*x^2 - 678846*x + 509627, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 - 24*x^16 + 184*x^15 + 279*x^14 - 2850*x^13 + 262*x^12 + 16494*x^11 + 2925*x^10 - 94040*x^9 + 73407*x^8 + 46704*x^7 + 266424*x^6 - 773052*x^5 + 255156*x^4 + 815050*x^3 - 318036*x^2 - 678846*x + 509627); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 6*x^17 - 24*x^16 + 184*x^15 + 279*x^14 - 2850*x^13 + 262*x^12 + 16494*x^11 + 2925*x^10 - 94040*x^9 + 73407*x^8 + 46704*x^7 + 266424*x^6 - 773052*x^5 + 255156*x^4 + 815050*x^3 - 318036*x^2 - 678846*x + 509627); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times S_3$ (as 18T3):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3 \times C_3$
Character table for $S_3 \times C_3$

Intermediate fields

\(\Q(\sqrt{-19}) \), 3.1.1539.1 x3, \(\Q(\zeta_{7})^+\), 6.0.45001899.2, 6.0.16468459.1, 6.0.108049559499.14 x2, 9.3.428848701651531.5 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 6 sibling: 6.0.108049559499.14
Degree 9 sibling: 9.3.428848701651531.5
Minimal sibling: 6.0.108049559499.14

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{3}$ R ${\href{/padicField/5.3.0.1}{3} }^{6}$ R ${\href{/padicField/11.3.0.1}{3} }^{6}$ ${\href{/padicField/13.2.0.1}{2} }^{9}$ ${\href{/padicField/17.3.0.1}{3} }^{6}$ R ${\href{/padicField/23.3.0.1}{3} }^{6}$ ${\href{/padicField/29.2.0.1}{2} }^{9}$ ${\href{/padicField/31.6.0.1}{6} }^{3}$ ${\href{/padicField/37.6.0.1}{6} }^{3}$ ${\href{/padicField/41.2.0.1}{2} }^{9}$ ${\href{/padicField/43.3.0.1}{3} }^{6}$ ${\href{/padicField/47.3.0.1}{3} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.6.3.24a1.1$x^{18} + 6 x^{16} + 15 x^{14} + 6 x^{13} + 29 x^{12} + 24 x^{11} + 51 x^{10} + 36 x^{9} + 72 x^{8} + 60 x^{7} + 85 x^{6} + 78 x^{5} + 69 x^{4} + 44 x^{3} + 60 x^{2} + 48 x + 23$$3$$6$$24$$S_3 \times C_3$not computed
\(7\) Copy content Toggle raw display 7.3.3.6a1.3$x^{9} + 18 x^{8} + 108 x^{7} + 228 x^{6} + 144 x^{5} + 432 x^{4} + 48 x^{3} + 288 x^{2} + 71$$3$$3$$6$$C_3^2$$$[\ ]_{3}^{3}$$
7.3.3.6a1.3$x^{9} + 18 x^{8} + 108 x^{7} + 228 x^{6} + 144 x^{5} + 432 x^{4} + 48 x^{3} + 288 x^{2} + 71$$3$$3$$6$$C_3^2$$$[\ ]_{3}^{3}$$
\(19\) Copy content Toggle raw display 19.3.2.3a1.2$x^{6} + 8 x^{4} + 34 x^{3} + 16 x^{2} + 136 x + 308$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
19.3.2.3a1.2$x^{6} + 8 x^{4} + 34 x^{3} + 16 x^{2} + 136 x + 308$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
19.3.2.3a1.2$x^{6} + 8 x^{4} + 34 x^{3} + 16 x^{2} + 136 x + 308$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)