Normalized defining polynomial
\( x^{16} - 3 x^{15} + x^{14} - 40 x^{13} - 136 x^{12} - 203 x^{11} - 694 x^{10} + 178 x^{9} + 427 x^{8} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(821630081083204084623649\)
\(\medspace = 17^{14}\cdot 47^{4}\)
|
| |
| Root discriminant: | \(31.24\) |
| |
| Galois root discriminant: | $17^{7/8}47^{1/2}\approx 81.7884043055344$ | ||
| Ramified primes: |
\(17\), \(47\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{83\cdots 98}a^{15}-\frac{10\cdots 49}{83\cdots 98}a^{14}+\frac{76\cdots 53}{41\cdots 49}a^{13}+\frac{44\cdots 58}{41\cdots 49}a^{12}+\frac{11\cdots 43}{83\cdots 98}a^{11}+\frac{11\cdots 21}{41\cdots 49}a^{10}-\frac{19\cdots 57}{41\cdots 49}a^{9}-\frac{44\cdots 09}{83\cdots 98}a^{8}+\frac{15\cdots 42}{41\cdots 49}a^{7}-\frac{94\cdots 10}{41\cdots 49}a^{6}+\frac{23\cdots 35}{83\cdots 98}a^{5}-\frac{15\cdots 43}{41\cdots 49}a^{4}+\frac{13\cdots 65}{41\cdots 49}a^{3}-\frac{10\cdots 45}{83\cdots 98}a^{2}+\frac{18\cdots 67}{41\cdots 49}a+\frac{21\cdots 51}{83\cdots 98}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{55\cdots 81}{83\cdots 98}a^{15}+\frac{32\cdots 15}{83\cdots 98}a^{14}-\frac{16\cdots 97}{83\cdots 98}a^{13}-\frac{85\cdots 91}{83\cdots 98}a^{12}-\frac{27\cdots 33}{83\cdots 98}a^{11}-\frac{67\cdots 27}{83\cdots 98}a^{10}-\frac{11\cdots 63}{83\cdots 98}a^{9}-\frac{29\cdots 27}{83\cdots 98}a^{8}+\frac{25\cdots 83}{83\cdots 98}a^{7}+\frac{19\cdots 19}{83\cdots 98}a^{6}+\frac{11\cdots 95}{83\cdots 98}a^{5}+\frac{85\cdots 51}{83\cdots 98}a^{4}+\frac{77\cdots 25}{83\cdots 98}a^{3}+\frac{32\cdots 39}{83\cdots 98}a^{2}-\frac{47\cdots 81}{83\cdots 98}a-\frac{39\cdots 26}{41\cdots 49}$, $\frac{46\cdots 95}{83\cdots 98}a^{15}-\frac{13\cdots 63}{83\cdots 98}a^{14}+\frac{14\cdots 12}{41\cdots 49}a^{13}-\frac{91\cdots 00}{41\cdots 49}a^{12}-\frac{65\cdots 85}{83\cdots 98}a^{11}-\frac{49\cdots 29}{41\cdots 49}a^{10}-\frac{16\cdots 64}{41\cdots 49}a^{9}+\frac{61\cdots 13}{83\cdots 98}a^{8}+\frac{11\cdots 39}{41\cdots 49}a^{7}+\frac{51\cdots 33}{41\cdots 49}a^{6}+\frac{12\cdots 93}{83\cdots 98}a^{5}+\frac{46\cdots 75}{41\cdots 49}a^{4}+\frac{28\cdots 50}{41\cdots 49}a^{3}-\frac{64\cdots 25}{83\cdots 98}a^{2}-\frac{45\cdots 23}{41\cdots 49}a-\frac{48\cdots 87}{83\cdots 98}$, $\frac{71\cdots 43}{83\cdots 98}a^{15}-\frac{13\cdots 59}{41\cdots 49}a^{14}+\frac{14\cdots 81}{41\cdots 49}a^{13}-\frac{15\cdots 83}{41\cdots 49}a^{12}-\frac{35\cdots 13}{41\cdots 49}a^{11}-\frac{38\cdots 58}{41\cdots 49}a^{10}-\frac{20\cdots 15}{41\cdots 49}a^{9}+\frac{25\cdots 96}{41\cdots 49}a^{8}-\frac{23\cdots 23}{41\cdots 49}a^{7}+\frac{76\cdots 59}{41\cdots 49}a^{6}+\frac{27\cdots 52}{41\cdots 49}a^{5}+\frac{33\cdots 68}{41\cdots 49}a^{4}+\frac{59\cdots 42}{41\cdots 49}a^{3}-\frac{11\cdots 84}{41\cdots 49}a^{2}+\frac{10\cdots 80}{41\cdots 49}a+\frac{13\cdots 17}{83\cdots 98}$, $\frac{45\cdots 31}{83\cdots 98}a^{15}-\frac{91\cdots 95}{41\cdots 49}a^{14}+\frac{10\cdots 92}{41\cdots 49}a^{13}-\frac{96\cdots 45}{41\cdots 49}a^{12}-\frac{21\cdots 27}{41\cdots 49}a^{11}-\frac{17\cdots 35}{41\cdots 49}a^{10}-\frac{11\cdots 61}{41\cdots 49}a^{9}+\frac{19\cdots 44}{41\cdots 49}a^{8}+\frac{43\cdots 24}{41\cdots 49}a^{7}+\frac{44\cdots 47}{41\cdots 49}a^{6}+\frac{78\cdots 50}{41\cdots 49}a^{5}+\frac{38\cdots 41}{41\cdots 49}a^{4}-\frac{10\cdots 63}{41\cdots 49}a^{3}-\frac{16\cdots 42}{41\cdots 49}a^{2}-\frac{21\cdots 57}{41\cdots 49}a+\frac{24\cdots 17}{83\cdots 98}$, $\frac{36\cdots 02}{41\cdots 49}a^{15}-\frac{13\cdots 96}{41\cdots 49}a^{14}+\frac{24\cdots 25}{83\cdots 98}a^{13}-\frac{30\cdots 53}{83\cdots 98}a^{12}-\frac{39\cdots 99}{41\cdots 49}a^{11}-\frac{90\cdots 79}{83\cdots 98}a^{10}-\frac{43\cdots 51}{83\cdots 98}a^{9}+\frac{22\cdots 69}{41\cdots 49}a^{8}+\frac{77\cdots 03}{83\cdots 98}a^{7}+\frac{15\cdots 33}{83\cdots 98}a^{6}+\frac{39\cdots 22}{41\cdots 49}a^{5}+\frac{74\cdots 87}{83\cdots 98}a^{4}+\frac{20\cdots 21}{83\cdots 98}a^{3}-\frac{90\cdots 05}{41\cdots 49}a^{2}-\frac{32\cdots 89}{83\cdots 98}a+\frac{78\cdots 39}{83\cdots 98}$, $\frac{19\cdots 45}{83\cdots 98}a^{15}-\frac{25\cdots 29}{83\cdots 98}a^{14}-\frac{84\cdots 79}{83\cdots 98}a^{13}-\frac{34\cdots 13}{41\cdots 49}a^{12}-\frac{38\cdots 63}{83\cdots 98}a^{11}-\frac{76\cdots 95}{83\cdots 98}a^{10}-\frac{91\cdots 16}{41\cdots 49}a^{9}-\frac{16\cdots 19}{83\cdots 98}a^{8}+\frac{21\cdots 59}{83\cdots 98}a^{7}+\frac{25\cdots 03}{41\cdots 49}a^{6}+\frac{11\cdots 47}{83\cdots 98}a^{5}+\frac{88\cdots 89}{83\cdots 98}a^{4}+\frac{34\cdots 79}{41\cdots 49}a^{3}+\frac{17\cdots 03}{83\cdots 98}a^{2}-\frac{66\cdots 19}{83\cdots 98}a-\frac{55\cdots 61}{83\cdots 98}$, $\frac{16\cdots 25}{83\cdots 98}a^{15}-\frac{27\cdots 09}{41\cdots 49}a^{14}+\frac{33\cdots 81}{83\cdots 98}a^{13}-\frac{32\cdots 11}{41\cdots 49}a^{12}-\frac{96\cdots 51}{41\cdots 49}a^{11}-\frac{22\cdots 31}{83\cdots 98}a^{10}-\frac{47\cdots 95}{41\cdots 49}a^{9}+\frac{40\cdots 27}{41\cdots 49}a^{8}+\frac{77\cdots 25}{83\cdots 98}a^{7}+\frac{15\cdots 51}{41\cdots 49}a^{6}+\frac{12\cdots 96}{41\cdots 49}a^{5}+\frac{91\cdots 89}{83\cdots 98}a^{4}+\frac{42\cdots 35}{41\cdots 49}a^{3}-\frac{46\cdots 39}{41\cdots 49}a^{2}-\frac{43\cdots 87}{83\cdots 98}a+\frac{47\cdots 11}{83\cdots 98}$, $\frac{54\cdots 59}{83\cdots 98}a^{15}-\frac{88\cdots 73}{83\cdots 98}a^{14}-\frac{21\cdots 33}{83\cdots 98}a^{13}-\frac{19\cdots 35}{83\cdots 98}a^{12}-\frac{10\cdots 77}{83\cdots 98}a^{11}-\frac{18\cdots 75}{83\cdots 98}a^{10}-\frac{46\cdots 25}{83\cdots 98}a^{9}-\frac{33\cdots 49}{83\cdots 98}a^{8}+\frac{67\cdots 31}{83\cdots 98}a^{7}+\frac{12\cdots 57}{83\cdots 98}a^{6}+\frac{29\cdots 81}{83\cdots 98}a^{5}+\frac{19\cdots 25}{83\cdots 98}a^{4}+\frac{14\cdots 03}{83\cdots 98}a^{3}+\frac{27\cdots 65}{83\cdots 98}a^{2}-\frac{24\cdots 95}{83\cdots 98}a-\frac{46\cdots 19}{41\cdots 49}$, $\frac{11\cdots 72}{41\cdots 49}a^{15}-\frac{39\cdots 73}{41\cdots 49}a^{14}+\frac{50\cdots 69}{83\cdots 98}a^{13}-\frac{48\cdots 97}{41\cdots 49}a^{12}-\frac{14\cdots 57}{41\cdots 49}a^{11}-\frac{39\cdots 49}{83\cdots 98}a^{10}-\frac{77\cdots 00}{41\cdots 49}a^{9}+\frac{44\cdots 84}{41\cdots 49}a^{8}+\frac{63\cdots 91}{83\cdots 98}a^{7}+\frac{25\cdots 92}{41\cdots 49}a^{6}+\frac{22\cdots 46}{41\cdots 49}a^{5}+\frac{38\cdots 39}{83\cdots 98}a^{4}+\frac{10\cdots 69}{41\cdots 49}a^{3}-\frac{54\cdots 98}{41\cdots 49}a^{2}-\frac{56\cdots 37}{83\cdots 98}a+\frac{43\cdots 38}{41\cdots 49}$, $\frac{44\cdots 25}{41\cdots 49}a^{15}-\frac{28\cdots 81}{83\cdots 98}a^{14}+\frac{20\cdots 85}{83\cdots 98}a^{13}-\frac{37\cdots 39}{83\cdots 98}a^{12}-\frac{10\cdots 71}{83\cdots 98}a^{11}-\frac{16\cdots 17}{83\cdots 98}a^{10}-\frac{61\cdots 19}{83\cdots 98}a^{9}+\frac{26\cdots 83}{83\cdots 98}a^{8}+\frac{63\cdots 73}{83\cdots 98}a^{7}+\frac{20\cdots 19}{83\cdots 98}a^{6}+\frac{17\cdots 49}{83\cdots 98}a^{5}+\frac{21\cdots 07}{83\cdots 98}a^{4}+\frac{12\cdots 69}{83\cdots 98}a^{3}+\frac{47\cdots 65}{83\cdots 98}a^{2}+\frac{16\cdots 55}{83\cdots 98}a-\frac{12\cdots 05}{83\cdots 98}$, $\frac{26\cdots 34}{41\cdots 49}a^{15}-\frac{17\cdots 49}{83\cdots 98}a^{14}+\frac{86\cdots 87}{83\cdots 98}a^{13}-\frac{10\cdots 80}{41\cdots 49}a^{12}-\frac{66\cdots 47}{83\cdots 98}a^{11}-\frac{86\cdots 81}{83\cdots 98}a^{10}-\frac{16\cdots 69}{41\cdots 49}a^{9}+\frac{19\cdots 97}{83\cdots 98}a^{8}+\frac{23\cdots 95}{83\cdots 98}a^{7}+\frac{54\cdots 65}{41\cdots 49}a^{6}+\frac{10\cdots 51}{83\cdots 98}a^{5}+\frac{63\cdots 47}{83\cdots 98}a^{4}+\frac{11\cdots 50}{41\cdots 49}a^{3}-\frac{22\cdots 77}{83\cdots 98}a^{2}-\frac{16\cdots 51}{83\cdots 98}a-\frac{10\cdots 53}{41\cdots 49}$
|
| |
| Regulator: | \( 864723.662197 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 864723.662197 \cdot 1}{2\cdot\sqrt{821630081083204084623649}}\cr\approx \mathstrut & 0.190313072466 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.2.230911.1, 4.2.13583.1, 8.4.906438128657.1, \(\Q(\zeta_{17})^+\), 8.4.53319889921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | 16.0.4009292695690170390860412175969.16 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{4}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(17\)
| 17.1.8.7a1.1 | $x^{8} + 17$ | $8$ | $1$ | $7$ | $C_8$ | $$[\ ]_{8}$$ |
| 17.1.8.7a1.1 | $x^{8} + 17$ | $8$ | $1$ | $7$ | $C_8$ | $$[\ ]_{8}$$ | |
|
\(47\)
| 47.2.1.0a1.1 | $x^{2} + 45 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 47.2.1.0a1.1 | $x^{2} + 45 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 47.2.1.0a1.1 | $x^{2} + 45 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 47.2.1.0a1.1 | $x^{2} + 45 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 47.2.2.2a1.2 | $x^{4} + 90 x^{3} + 2035 x^{2} + 450 x + 72$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 47.2.2.2a1.2 | $x^{4} + 90 x^{3} + 2035 x^{2} + 450 x + 72$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |