Properties

Label 16.8.821...649.2
Degree $16$
Signature $[8, 4]$
Discriminant $8.216\times 10^{23}$
Root discriminant \(31.24\)
Ramified primes $17,47$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^2 : C_8$ (as 16T24)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + x^14 - 40*x^13 - 136*x^12 - 203*x^11 - 694*x^10 + 178*x^9 + 427*x^8 + 2206*x^7 + 2572*x^6 + 2059*x^5 + 1224*x^4 + 116*x^3 - 115*x^2 - 11*x + 1)
 
gp: K = bnfinit(y^16 - 3*y^15 + y^14 - 40*y^13 - 136*y^12 - 203*y^11 - 694*y^10 + 178*y^9 + 427*y^8 + 2206*y^7 + 2572*y^6 + 2059*y^5 + 1224*y^4 + 116*y^3 - 115*y^2 - 11*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 3*x^15 + x^14 - 40*x^13 - 136*x^12 - 203*x^11 - 694*x^10 + 178*x^9 + 427*x^8 + 2206*x^7 + 2572*x^6 + 2059*x^5 + 1224*x^4 + 116*x^3 - 115*x^2 - 11*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 3*x^15 + x^14 - 40*x^13 - 136*x^12 - 203*x^11 - 694*x^10 + 178*x^9 + 427*x^8 + 2206*x^7 + 2572*x^6 + 2059*x^5 + 1224*x^4 + 116*x^3 - 115*x^2 - 11*x + 1)
 

\( x^{16} - 3 x^{15} + x^{14} - 40 x^{13} - 136 x^{12} - 203 x^{11} - 694 x^{10} + 178 x^{9} + 427 x^{8} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(821630081083204084623649\) \(\medspace = 17^{14}\cdot 47^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(31.24\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $17^{7/8}47^{1/2}\approx 81.7884043055344$
Ramified primes:   \(17\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{83\!\cdots\!98}a^{15}-\frac{10\!\cdots\!49}{83\!\cdots\!98}a^{14}+\frac{76\!\cdots\!53}{41\!\cdots\!49}a^{13}+\frac{44\!\cdots\!58}{41\!\cdots\!49}a^{12}+\frac{11\!\cdots\!43}{83\!\cdots\!98}a^{11}+\frac{11\!\cdots\!21}{41\!\cdots\!49}a^{10}-\frac{19\!\cdots\!57}{41\!\cdots\!49}a^{9}-\frac{44\!\cdots\!09}{83\!\cdots\!98}a^{8}+\frac{15\!\cdots\!42}{41\!\cdots\!49}a^{7}-\frac{94\!\cdots\!10}{41\!\cdots\!49}a^{6}+\frac{23\!\cdots\!35}{83\!\cdots\!98}a^{5}-\frac{15\!\cdots\!43}{41\!\cdots\!49}a^{4}+\frac{13\!\cdots\!65}{41\!\cdots\!49}a^{3}-\frac{10\!\cdots\!45}{83\!\cdots\!98}a^{2}+\frac{18\!\cdots\!67}{41\!\cdots\!49}a+\frac{21\!\cdots\!51}{83\!\cdots\!98}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{55\!\cdots\!81}{83\!\cdots\!98}a^{15}+\frac{32\!\cdots\!15}{83\!\cdots\!98}a^{14}-\frac{16\!\cdots\!97}{83\!\cdots\!98}a^{13}-\frac{85\!\cdots\!91}{83\!\cdots\!98}a^{12}-\frac{27\!\cdots\!33}{83\!\cdots\!98}a^{11}-\frac{67\!\cdots\!27}{83\!\cdots\!98}a^{10}-\frac{11\!\cdots\!63}{83\!\cdots\!98}a^{9}-\frac{29\!\cdots\!27}{83\!\cdots\!98}a^{8}+\frac{25\!\cdots\!83}{83\!\cdots\!98}a^{7}+\frac{19\!\cdots\!19}{83\!\cdots\!98}a^{6}+\frac{11\!\cdots\!95}{83\!\cdots\!98}a^{5}+\frac{85\!\cdots\!51}{83\!\cdots\!98}a^{4}+\frac{77\!\cdots\!25}{83\!\cdots\!98}a^{3}+\frac{32\!\cdots\!39}{83\!\cdots\!98}a^{2}-\frac{47\!\cdots\!81}{83\!\cdots\!98}a-\frac{39\!\cdots\!26}{41\!\cdots\!49}$, $\frac{46\!\cdots\!95}{83\!\cdots\!98}a^{15}-\frac{13\!\cdots\!63}{83\!\cdots\!98}a^{14}+\frac{14\!\cdots\!12}{41\!\cdots\!49}a^{13}-\frac{91\!\cdots\!00}{41\!\cdots\!49}a^{12}-\frac{65\!\cdots\!85}{83\!\cdots\!98}a^{11}-\frac{49\!\cdots\!29}{41\!\cdots\!49}a^{10}-\frac{16\!\cdots\!64}{41\!\cdots\!49}a^{9}+\frac{61\!\cdots\!13}{83\!\cdots\!98}a^{8}+\frac{11\!\cdots\!39}{41\!\cdots\!49}a^{7}+\frac{51\!\cdots\!33}{41\!\cdots\!49}a^{6}+\frac{12\!\cdots\!93}{83\!\cdots\!98}a^{5}+\frac{46\!\cdots\!75}{41\!\cdots\!49}a^{4}+\frac{28\!\cdots\!50}{41\!\cdots\!49}a^{3}-\frac{64\!\cdots\!25}{83\!\cdots\!98}a^{2}-\frac{45\!\cdots\!23}{41\!\cdots\!49}a-\frac{48\!\cdots\!87}{83\!\cdots\!98}$, $\frac{71\!\cdots\!43}{83\!\cdots\!98}a^{15}-\frac{13\!\cdots\!59}{41\!\cdots\!49}a^{14}+\frac{14\!\cdots\!81}{41\!\cdots\!49}a^{13}-\frac{15\!\cdots\!83}{41\!\cdots\!49}a^{12}-\frac{35\!\cdots\!13}{41\!\cdots\!49}a^{11}-\frac{38\!\cdots\!58}{41\!\cdots\!49}a^{10}-\frac{20\!\cdots\!15}{41\!\cdots\!49}a^{9}+\frac{25\!\cdots\!96}{41\!\cdots\!49}a^{8}-\frac{23\!\cdots\!23}{41\!\cdots\!49}a^{7}+\frac{76\!\cdots\!59}{41\!\cdots\!49}a^{6}+\frac{27\!\cdots\!52}{41\!\cdots\!49}a^{5}+\frac{33\!\cdots\!68}{41\!\cdots\!49}a^{4}+\frac{59\!\cdots\!42}{41\!\cdots\!49}a^{3}-\frac{11\!\cdots\!84}{41\!\cdots\!49}a^{2}+\frac{10\!\cdots\!80}{41\!\cdots\!49}a+\frac{13\!\cdots\!17}{83\!\cdots\!98}$, $\frac{45\!\cdots\!31}{83\!\cdots\!98}a^{15}-\frac{91\!\cdots\!95}{41\!\cdots\!49}a^{14}+\frac{10\!\cdots\!92}{41\!\cdots\!49}a^{13}-\frac{96\!\cdots\!45}{41\!\cdots\!49}a^{12}-\frac{21\!\cdots\!27}{41\!\cdots\!49}a^{11}-\frac{17\!\cdots\!35}{41\!\cdots\!49}a^{10}-\frac{11\!\cdots\!61}{41\!\cdots\!49}a^{9}+\frac{19\!\cdots\!44}{41\!\cdots\!49}a^{8}+\frac{43\!\cdots\!24}{41\!\cdots\!49}a^{7}+\frac{44\!\cdots\!47}{41\!\cdots\!49}a^{6}+\frac{78\!\cdots\!50}{41\!\cdots\!49}a^{5}+\frac{38\!\cdots\!41}{41\!\cdots\!49}a^{4}-\frac{10\!\cdots\!63}{41\!\cdots\!49}a^{3}-\frac{16\!\cdots\!42}{41\!\cdots\!49}a^{2}-\frac{21\!\cdots\!57}{41\!\cdots\!49}a+\frac{24\!\cdots\!17}{83\!\cdots\!98}$, $\frac{36\!\cdots\!02}{41\!\cdots\!49}a^{15}-\frac{13\!\cdots\!96}{41\!\cdots\!49}a^{14}+\frac{24\!\cdots\!25}{83\!\cdots\!98}a^{13}-\frac{30\!\cdots\!53}{83\!\cdots\!98}a^{12}-\frac{39\!\cdots\!99}{41\!\cdots\!49}a^{11}-\frac{90\!\cdots\!79}{83\!\cdots\!98}a^{10}-\frac{43\!\cdots\!51}{83\!\cdots\!98}a^{9}+\frac{22\!\cdots\!69}{41\!\cdots\!49}a^{8}+\frac{77\!\cdots\!03}{83\!\cdots\!98}a^{7}+\frac{15\!\cdots\!33}{83\!\cdots\!98}a^{6}+\frac{39\!\cdots\!22}{41\!\cdots\!49}a^{5}+\frac{74\!\cdots\!87}{83\!\cdots\!98}a^{4}+\frac{20\!\cdots\!21}{83\!\cdots\!98}a^{3}-\frac{90\!\cdots\!05}{41\!\cdots\!49}a^{2}-\frac{32\!\cdots\!89}{83\!\cdots\!98}a+\frac{78\!\cdots\!39}{83\!\cdots\!98}$, $\frac{19\!\cdots\!45}{83\!\cdots\!98}a^{15}-\frac{25\!\cdots\!29}{83\!\cdots\!98}a^{14}-\frac{84\!\cdots\!79}{83\!\cdots\!98}a^{13}-\frac{34\!\cdots\!13}{41\!\cdots\!49}a^{12}-\frac{38\!\cdots\!63}{83\!\cdots\!98}a^{11}-\frac{76\!\cdots\!95}{83\!\cdots\!98}a^{10}-\frac{91\!\cdots\!16}{41\!\cdots\!49}a^{9}-\frac{16\!\cdots\!19}{83\!\cdots\!98}a^{8}+\frac{21\!\cdots\!59}{83\!\cdots\!98}a^{7}+\frac{25\!\cdots\!03}{41\!\cdots\!49}a^{6}+\frac{11\!\cdots\!47}{83\!\cdots\!98}a^{5}+\frac{88\!\cdots\!89}{83\!\cdots\!98}a^{4}+\frac{34\!\cdots\!79}{41\!\cdots\!49}a^{3}+\frac{17\!\cdots\!03}{83\!\cdots\!98}a^{2}-\frac{66\!\cdots\!19}{83\!\cdots\!98}a-\frac{55\!\cdots\!61}{83\!\cdots\!98}$, $\frac{16\!\cdots\!25}{83\!\cdots\!98}a^{15}-\frac{27\!\cdots\!09}{41\!\cdots\!49}a^{14}+\frac{33\!\cdots\!81}{83\!\cdots\!98}a^{13}-\frac{32\!\cdots\!11}{41\!\cdots\!49}a^{12}-\frac{96\!\cdots\!51}{41\!\cdots\!49}a^{11}-\frac{22\!\cdots\!31}{83\!\cdots\!98}a^{10}-\frac{47\!\cdots\!95}{41\!\cdots\!49}a^{9}+\frac{40\!\cdots\!27}{41\!\cdots\!49}a^{8}+\frac{77\!\cdots\!25}{83\!\cdots\!98}a^{7}+\frac{15\!\cdots\!51}{41\!\cdots\!49}a^{6}+\frac{12\!\cdots\!96}{41\!\cdots\!49}a^{5}+\frac{91\!\cdots\!89}{83\!\cdots\!98}a^{4}+\frac{42\!\cdots\!35}{41\!\cdots\!49}a^{3}-\frac{46\!\cdots\!39}{41\!\cdots\!49}a^{2}-\frac{43\!\cdots\!87}{83\!\cdots\!98}a+\frac{47\!\cdots\!11}{83\!\cdots\!98}$, $\frac{54\!\cdots\!59}{83\!\cdots\!98}a^{15}-\frac{88\!\cdots\!73}{83\!\cdots\!98}a^{14}-\frac{21\!\cdots\!33}{83\!\cdots\!98}a^{13}-\frac{19\!\cdots\!35}{83\!\cdots\!98}a^{12}-\frac{10\!\cdots\!77}{83\!\cdots\!98}a^{11}-\frac{18\!\cdots\!75}{83\!\cdots\!98}a^{10}-\frac{46\!\cdots\!25}{83\!\cdots\!98}a^{9}-\frac{33\!\cdots\!49}{83\!\cdots\!98}a^{8}+\frac{67\!\cdots\!31}{83\!\cdots\!98}a^{7}+\frac{12\!\cdots\!57}{83\!\cdots\!98}a^{6}+\frac{29\!\cdots\!81}{83\!\cdots\!98}a^{5}+\frac{19\!\cdots\!25}{83\!\cdots\!98}a^{4}+\frac{14\!\cdots\!03}{83\!\cdots\!98}a^{3}+\frac{27\!\cdots\!65}{83\!\cdots\!98}a^{2}-\frac{24\!\cdots\!95}{83\!\cdots\!98}a-\frac{46\!\cdots\!19}{41\!\cdots\!49}$, $\frac{11\!\cdots\!72}{41\!\cdots\!49}a^{15}-\frac{39\!\cdots\!73}{41\!\cdots\!49}a^{14}+\frac{50\!\cdots\!69}{83\!\cdots\!98}a^{13}-\frac{48\!\cdots\!97}{41\!\cdots\!49}a^{12}-\frac{14\!\cdots\!57}{41\!\cdots\!49}a^{11}-\frac{39\!\cdots\!49}{83\!\cdots\!98}a^{10}-\frac{77\!\cdots\!00}{41\!\cdots\!49}a^{9}+\frac{44\!\cdots\!84}{41\!\cdots\!49}a^{8}+\frac{63\!\cdots\!91}{83\!\cdots\!98}a^{7}+\frac{25\!\cdots\!92}{41\!\cdots\!49}a^{6}+\frac{22\!\cdots\!46}{41\!\cdots\!49}a^{5}+\frac{38\!\cdots\!39}{83\!\cdots\!98}a^{4}+\frac{10\!\cdots\!69}{41\!\cdots\!49}a^{3}-\frac{54\!\cdots\!98}{41\!\cdots\!49}a^{2}-\frac{56\!\cdots\!37}{83\!\cdots\!98}a+\frac{43\!\cdots\!38}{41\!\cdots\!49}$, $\frac{44\!\cdots\!25}{41\!\cdots\!49}a^{15}-\frac{28\!\cdots\!81}{83\!\cdots\!98}a^{14}+\frac{20\!\cdots\!85}{83\!\cdots\!98}a^{13}-\frac{37\!\cdots\!39}{83\!\cdots\!98}a^{12}-\frac{10\!\cdots\!71}{83\!\cdots\!98}a^{11}-\frac{16\!\cdots\!17}{83\!\cdots\!98}a^{10}-\frac{61\!\cdots\!19}{83\!\cdots\!98}a^{9}+\frac{26\!\cdots\!83}{83\!\cdots\!98}a^{8}+\frac{63\!\cdots\!73}{83\!\cdots\!98}a^{7}+\frac{20\!\cdots\!19}{83\!\cdots\!98}a^{6}+\frac{17\!\cdots\!49}{83\!\cdots\!98}a^{5}+\frac{21\!\cdots\!07}{83\!\cdots\!98}a^{4}+\frac{12\!\cdots\!69}{83\!\cdots\!98}a^{3}+\frac{47\!\cdots\!65}{83\!\cdots\!98}a^{2}+\frac{16\!\cdots\!55}{83\!\cdots\!98}a-\frac{12\!\cdots\!05}{83\!\cdots\!98}$, $\frac{26\!\cdots\!34}{41\!\cdots\!49}a^{15}-\frac{17\!\cdots\!49}{83\!\cdots\!98}a^{14}+\frac{86\!\cdots\!87}{83\!\cdots\!98}a^{13}-\frac{10\!\cdots\!80}{41\!\cdots\!49}a^{12}-\frac{66\!\cdots\!47}{83\!\cdots\!98}a^{11}-\frac{86\!\cdots\!81}{83\!\cdots\!98}a^{10}-\frac{16\!\cdots\!69}{41\!\cdots\!49}a^{9}+\frac{19\!\cdots\!97}{83\!\cdots\!98}a^{8}+\frac{23\!\cdots\!95}{83\!\cdots\!98}a^{7}+\frac{54\!\cdots\!65}{41\!\cdots\!49}a^{6}+\frac{10\!\cdots\!51}{83\!\cdots\!98}a^{5}+\frac{63\!\cdots\!47}{83\!\cdots\!98}a^{4}+\frac{11\!\cdots\!50}{41\!\cdots\!49}a^{3}-\frac{22\!\cdots\!77}{83\!\cdots\!98}a^{2}-\frac{16\!\cdots\!51}{83\!\cdots\!98}a-\frac{10\!\cdots\!53}{41\!\cdots\!49}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 864723.662197 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 864723.662197 \cdot 1}{2\cdot\sqrt{821630081083204084623649}}\cr\approx \mathstrut & 0.190313072466 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + x^14 - 40*x^13 - 136*x^12 - 203*x^11 - 694*x^10 + 178*x^9 + 427*x^8 + 2206*x^7 + 2572*x^6 + 2059*x^5 + 1224*x^4 + 116*x^3 - 115*x^2 - 11*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 3*x^15 + x^14 - 40*x^13 - 136*x^12 - 203*x^11 - 694*x^10 + 178*x^9 + 427*x^8 + 2206*x^7 + 2572*x^6 + 2059*x^5 + 1224*x^4 + 116*x^3 - 115*x^2 - 11*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 3*x^15 + x^14 - 40*x^13 - 136*x^12 - 203*x^11 - 694*x^10 + 178*x^9 + 427*x^8 + 2206*x^7 + 2572*x^6 + 2059*x^5 + 1224*x^4 + 116*x^3 - 115*x^2 - 11*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 3*x^15 + x^14 - 40*x^13 - 136*x^12 - 203*x^11 - 694*x^10 + 178*x^9 + 427*x^8 + 2206*x^7 + 2572*x^6 + 2059*x^5 + 1224*x^4 + 116*x^3 - 115*x^2 - 11*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2:C_8$ (as 16T24):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2^2 : C_8$
Character table for $C_2^2 : C_8$

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, 4.2.230911.1, 4.2.13583.1, 8.4.906438128657.1, \(\Q(\zeta_{17})^+\), 8.4.53319889921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 sibling: 16.0.4009292695690170390860412175969.16
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{8}$ R ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ R ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(17\) Copy content Toggle raw display 17.8.7.3$x^{8} + 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} + 17$$8$$1$$7$$C_8$$[\ ]_{8}$
\(47\) Copy content Toggle raw display 47.2.0.1$x^{2} + 45 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} + 45 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} + 45 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} + 45 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
47.4.2.1$x^{4} + 90 x^{3} + 2129 x^{2} + 4680 x + 96939$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
47.4.2.1$x^{4} + 90 x^{3} + 2129 x^{2} + 4680 x + 96939$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$