Normalized defining polynomial
\( x^{16} - 4 x^{15} - 6 x^{14} + 32 x^{13} + 20 x^{12} - 96 x^{11} - 76 x^{10} + 120 x^{9} + 162 x^{8} + \cdots + 4 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(74163788185600000000\)
\(\medspace = 2^{28}\cdot 5^{8}\cdot 29^{4}\)
|
| |
Root discriminant: | \(17.45\) |
| |
Galois root discriminant: | $2^{15/8}5^{1/2}29^{1/2}\approx 44.16876366153594$ | ||
Ramified primes: |
\(2\), \(5\), \(29\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{2}a^{14}$, $\frac{1}{2347124319682}a^{15}+\frac{391387497899}{2347124319682}a^{14}-\frac{10745740897}{1173562159841}a^{13}-\frac{212605451481}{2347124319682}a^{12}+\frac{127985234085}{2347124319682}a^{11}+\frac{41052047148}{1173562159841}a^{10}+\frac{261306470507}{2347124319682}a^{9}+\frac{383940382095}{2347124319682}a^{8}-\frac{73148302465}{1173562159841}a^{7}+\frac{582142336762}{1173562159841}a^{6}+\frac{496419579935}{1173562159841}a^{5}+\frac{196668153327}{1173562159841}a^{4}+\frac{387960699572}{1173562159841}a^{3}-\frac{517505828948}{1173562159841}a^{2}+\frac{55704357363}{1173562159841}a-\frac{13357769744}{1173562159841}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{155005523977}{2347124319682}a^{15}-\frac{699284844853}{2347124319682}a^{14}-\frac{295645450702}{1173562159841}a^{13}+\frac{5331056438909}{2347124319682}a^{12}+\frac{250233442575}{1173562159841}a^{11}-\frac{7814135488477}{1173562159841}a^{10}-\frac{2191621923542}{1173562159841}a^{9}+\frac{22095557118973}{2347124319682}a^{8}+\frac{8097824586347}{1173562159841}a^{7}-\frac{4314795628174}{1173562159841}a^{6}-\frac{9248673715816}{1173562159841}a^{5}-\frac{1820756550111}{1173562159841}a^{4}+\frac{3960389510142}{1173562159841}a^{3}-\frac{5608315514724}{1173562159841}a^{2}-\frac{800863853652}{1173562159841}a+\frac{1355425470662}{1173562159841}$, $\frac{365998266175}{2347124319682}a^{15}-\frac{1626160857145}{2347124319682}a^{14}-\frac{756428156812}{1173562159841}a^{13}+\frac{6227923972191}{1173562159841}a^{12}+\frac{1104067250909}{1173562159841}a^{11}-\frac{18281599549869}{1173562159841}a^{10}-\frac{6812769381183}{1173562159841}a^{9}+\frac{25065062353451}{1173562159841}a^{8}+\frac{20833674358140}{1173562159841}a^{7}-\frac{6557028105786}{1173562159841}a^{6}-\frac{19942625724473}{1173562159841}a^{5}-\frac{7369217009740}{1173562159841}a^{4}+\frac{7095341415103}{1173562159841}a^{3}-\frac{15077549681297}{1173562159841}a^{2}-\frac{7305754732692}{1173562159841}a+\frac{1783197276025}{1173562159841}$, $\frac{11224803556}{1173562159841}a^{15}-\frac{75891270143}{2347124319682}a^{14}-\frac{248986099507}{2347124319682}a^{13}+\frac{423873976127}{1173562159841}a^{12}+\frac{1259755493583}{2347124319682}a^{11}-\frac{3468237051849}{2347124319682}a^{10}-\frac{2060288366742}{1173562159841}a^{9}+\frac{5721433785017}{2347124319682}a^{8}+\frac{4116144184245}{1173562159841}a^{7}-\frac{853493988694}{1173562159841}a^{6}-\frac{3276151721472}{1173562159841}a^{5}-\frac{814821369719}{1173562159841}a^{4}+\frac{1167589814146}{1173562159841}a^{3}-\frac{1501044609530}{1173562159841}a^{2}-\frac{4449524008628}{1173562159841}a+\frac{412682005957}{1173562159841}$, $\frac{158439215483}{2347124319682}a^{15}-\frac{265990277347}{1173562159841}a^{14}-\frac{1316405990345}{2347124319682}a^{13}+\frac{2197949507165}{1173562159841}a^{12}+\frac{2927842201999}{1173562159841}a^{11}-\frac{12589928715245}{2347124319682}a^{10}-\frac{9413640768091}{1173562159841}a^{9}+\frac{5108135075599}{1173562159841}a^{8}+\frac{15294254285921}{1173562159841}a^{7}+\frac{7248957142659}{1173562159841}a^{6}-\frac{6364614218243}{1173562159841}a^{5}-\frac{8750853130504}{1173562159841}a^{4}-\frac{442184742355}{1173562159841}a^{3}-\frac{4702043923907}{1173562159841}a^{2}-\frac{7216570975544}{1173562159841}a-\frac{1342309898133}{1173562159841}$, $\frac{154485317205}{1173562159841}a^{15}-\frac{678429719680}{1173562159841}a^{14}-\frac{1317319657679}{2347124319682}a^{13}+\frac{5177465259563}{1173562159841}a^{12}+\frac{2124876717259}{2347124319682}a^{11}-\frac{29953540602425}{2347124319682}a^{10}-\frac{5927992848353}{1173562159841}a^{9}+\frac{19664356623257}{1173562159841}a^{8}+\frac{16907796130165}{1173562159841}a^{7}-\frac{3736091359346}{1173562159841}a^{6}-\frac{14163417078349}{1173562159841}a^{5}-\frac{5460563216059}{1173562159841}a^{4}+\frac{2950800214949}{1173562159841}a^{3}-\frac{14938266425329}{1173562159841}a^{2}-\frac{6088340737861}{1173562159841}a+\frac{1344824310379}{1173562159841}$, $\frac{144593534123}{2347124319682}a^{15}-\frac{319665697211}{1173562159841}a^{14}-\frac{603570961315}{2347124319682}a^{13}+\frac{2452327051940}{1173562159841}a^{12}+\frac{432380429460}{1173562159841}a^{11}-\frac{7216684647266}{1173562159841}a^{10}-\frac{5137805194985}{2347124319682}a^{9}+\frac{10051172154499}{1173562159841}a^{8}+\frac{7922971653674}{1173562159841}a^{7}-\frac{3297453108702}{1173562159841}a^{6}-\frac{7888030027676}{1173562159841}a^{5}-\frac{2576158731584}{1173562159841}a^{4}+\frac{3037681929128}{1173562159841}a^{3}-\frac{5544172795792}{1173562159841}a^{2}-\frac{2232219593449}{1173562159841}a+\frac{1600939184079}{1173562159841}$, $\frac{14733387179}{2347124319682}a^{15}-\frac{88409390019}{2347124319682}a^{14}+\frac{8749787255}{1173562159841}a^{13}+\frac{738157460875}{2347124319682}a^{12}-\frac{714502010815}{2347124319682}a^{11}-\frac{2717265268987}{2347124319682}a^{10}+\frac{2560199207385}{2347124319682}a^{9}+\frac{3237040018189}{1173562159841}a^{8}-\frac{1536961193081}{1173562159841}a^{7}-\frac{5089513621046}{1173562159841}a^{6}-\frac{745413643113}{1173562159841}a^{5}+\frac{4173480499829}{1173562159841}a^{4}+\frac{2677728229421}{1173562159841}a^{3}-\frac{1843382040961}{1173562159841}a^{2}-\frac{669848461401}{1173562159841}a+\frac{1289081347619}{1173562159841}$, $\frac{205141139801}{2347124319682}a^{15}-\frac{443416226135}{1173562159841}a^{14}-\frac{474788029573}{1173562159841}a^{13}+\frac{6873802279007}{2347124319682}a^{12}+\frac{1943033108653}{2347124319682}a^{11}-\frac{20209108765227}{2347124319682}a^{10}-\frac{9513902897027}{2347124319682}a^{9}+\frac{26638690073573}{2347124319682}a^{8}+\frac{13000638647558}{1173562159841}a^{7}-\frac{1906909672576}{1173562159841}a^{6}-\frac{11937449584106}{1173562159841}a^{5}-\frac{6244680324082}{1173562159841}a^{4}+\frac{3344548954219}{1173562159841}a^{3}-\frac{7220204204419}{1173562159841}a^{2}-\frac{3012496356270}{1173562159841}a+\frac{1303908774971}{1173562159841}$, $\frac{274416203546}{1173562159841}a^{15}-\frac{2432338703813}{2347124319682}a^{14}-\frac{1160862938473}{1173562159841}a^{13}+\frac{9414698579325}{1173562159841}a^{12}+\frac{3472176725115}{2347124319682}a^{11}-\frac{56285117630067}{2347124319682}a^{10}-\frac{10010787110999}{1173562159841}a^{9}+\frac{80222919126647}{2347124319682}a^{8}+\frac{31033886701346}{1173562159841}a^{7}-\frac{14687041103244}{1173562159841}a^{6}-\frac{32088640946029}{1173562159841}a^{5}-\frac{7408694152306}{1173562159841}a^{4}+\frac{13220975885458}{1173562159841}a^{3}-\frac{22307131288606}{1173562159841}a^{2}-\frac{10632069098143}{1173562159841}a+\frac{4419740582130}{1173562159841}$, $\frac{5995243177}{2347124319682}a^{15}+\frac{43087536925}{2347124319682}a^{14}-\frac{132948940788}{1173562159841}a^{13}-\frac{110797898956}{1173562159841}a^{12}+\frac{807126497758}{1173562159841}a^{11}+\frac{777291234249}{2347124319682}a^{10}-\frac{3062097574631}{2347124319682}a^{9}-\frac{1307223362397}{1173562159841}a^{8}-\frac{261594789474}{1173562159841}a^{7}+\frac{366663515904}{1173562159841}a^{6}+\frac{2391451826759}{1173562159841}a^{5}+\frac{2985516890114}{1173562159841}a^{4}+\frac{2586329662782}{1173562159841}a^{3}+\frac{272972192978}{1173562159841}a^{2}-\frac{2197337828249}{1173562159841}a-\frac{20182687773}{1173562159841}$, $\frac{158455230821}{2347124319682}a^{15}-\frac{680366852689}{2347124319682}a^{14}-\frac{615597979827}{2347124319682}a^{13}+\frac{4835545519491}{2347124319682}a^{12}+\frac{352904053769}{1173562159841}a^{11}-\frac{12531961210693}{2347124319682}a^{10}-\frac{2112075194657}{1173562159841}a^{9}+\frac{7317074385902}{1173562159841}a^{8}+\frac{5460969159181}{1173562159841}a^{7}-\frac{2000152126478}{1173562159841}a^{6}-\frac{5193034025738}{1173562159841}a^{5}+\frac{536084855624}{1173562159841}a^{4}+\frac{4404617823853}{1173562159841}a^{3}-\frac{5031603631646}{1173562159841}a^{2}+\frac{759126646452}{1173562159841}a+\frac{453555503967}{1173562159841}$
|
| |
Regulator: | \( 9015.09092349 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 9015.09092349 \cdot 1}{2\cdot\sqrt{74163788185600000000}}\cr\approx \mathstrut & 0.208835151592 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.400.1, 8.4.74240000.1, 8.4.74240000.2, 8.4.2152960000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.4.4635236761600000000.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.28a19.1 | $x^{16} + 10 x^{15} + 50 x^{14} + 168 x^{13} + 420 x^{12} + 826 x^{11} + 1318 x^{10} + 1742 x^{9} + 1931 x^{8} + 1810 x^{7} + 1438 x^{6} + 966 x^{5} + 542 x^{4} + 248 x^{3} + 88 x^{2} + 22 x + 5$ | $8$ | $2$ | $28$ | 16T171 | $$[2, 2, 2, 2]^{4}$$ |
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(29\)
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |