Normalized defining polynomial
\( x^{16} - 2 x^{15} - 2 x^{14} + 10 x^{12} + 23 x^{11} - 40 x^{10} - 45 x^{9} + 2 x^{8} + 120 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(38999408308687890625\)
\(\medspace = 5^{8}\cdot 29^{4}\cdot 109^{4}\)
|
| |
Root discriminant: | \(16.77\) |
| |
Galois root discriminant: | $5^{1/2}29^{1/2}109^{1/2}\approx 125.7179382586272$ | ||
Ramified primes: |
\(5\), \(29\), \(109\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{2335211601}a^{15}-\frac{79321355}{778403867}a^{14}+\frac{46470270}{778403867}a^{13}-\frac{280606577}{2335211601}a^{12}-\frac{905719504}{2335211601}a^{11}-\frac{69930790}{778403867}a^{10}+\frac{217132474}{778403867}a^{9}+\frac{274360907}{2335211601}a^{8}+\frac{491620276}{2335211601}a^{7}-\frac{1061763499}{2335211601}a^{6}+\frac{757967546}{2335211601}a^{5}-\frac{291370969}{778403867}a^{4}-\frac{493092518}{2335211601}a^{3}+\frac{850959046}{2335211601}a^{2}+\frac{341349535}{2335211601}a-\frac{292398184}{2335211601}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{178255}{270373}a^{15}-\frac{315861}{270373}a^{14}-\frac{377957}{270373}a^{13}-\frac{185483}{270373}a^{12}+\frac{1653211}{270373}a^{11}+\frac{4435251}{270373}a^{10}-\frac{5622204}{270373}a^{9}-\frac{8170132}{270373}a^{8}-\frac{3292203}{270373}a^{7}+\frac{18572339}{270373}a^{6}+\frac{16386231}{270373}a^{5}-\frac{29146941}{270373}a^{4}+\frac{1480229}{270373}a^{3}+\frac{4481091}{270373}a^{2}-\frac{327546}{270373}a+\frac{407357}{270373}$, $\frac{1745269223}{2335211601}a^{15}-\frac{1989359809}{2335211601}a^{14}-\frac{5085692423}{2335211601}a^{13}-\frac{4478743013}{2335211601}a^{12}+\frac{13190920225}{2335211601}a^{11}+\frac{51035309560}{2335211601}a^{10}-\frac{24701242123}{2335211601}a^{9}-\frac{96125451208}{2335211601}a^{8}-\frac{79791101980}{2335211601}a^{7}+\frac{43738826600}{778403867}a^{6}+\frac{76396167009}{778403867}a^{5}-\frac{167681610106}{2335211601}a^{4}-\frac{25695326403}{778403867}a^{3}+\frac{18372897659}{778403867}a^{2}-\frac{925379892}{778403867}a-\frac{6205383004}{2335211601}$, $\frac{3284857658}{2335211601}a^{15}-\frac{4717451266}{2335211601}a^{14}-\frac{8350107032}{2335211601}a^{13}-\frac{6080759684}{2335211601}a^{12}+\frac{27469703632}{2335211601}a^{11}+\frac{89342572447}{2335211601}a^{10}-\frac{73260218071}{2335211601}a^{9}-\frac{166690881292}{2335211601}a^{8}-\frac{108225859291}{2335211601}a^{7}+\frac{97208590581}{778403867}a^{6}+\frac{123572126058}{778403867}a^{5}-\frac{419423739523}{2335211601}a^{4}-\frac{21433747112}{778403867}a^{3}+\frac{31273958648}{778403867}a^{2}-\frac{1868384826}{778403867}a-\frac{2687040595}{2335211601}$, $\frac{500392879}{778403867}a^{15}-\frac{1595153977}{2335211601}a^{14}-\frac{4478743013}{2335211601}a^{13}-\frac{4261772005}{2335211601}a^{12}+\frac{3631372477}{778403867}a^{11}+\frac{45109526797}{2335211601}a^{10}-\frac{17588336173}{2335211601}a^{9}-\frac{83281640426}{2335211601}a^{8}-\frac{26071942320}{778403867}a^{7}+\frac{105274386194}{2335211601}a^{6}+\frac{209296542062}{2335211601}a^{5}-\frac{122462979007}{2335211601}a^{4}-\frac{72285960302}{2335211601}a^{3}+\frac{21657629446}{2335211601}a^{2}+\frac{6011501557}{2335211601}a-\frac{1745269223}{2335211601}$, $\frac{1013589024}{778403867}a^{15}-\frac{4323245434}{2335211601}a^{14}-\frac{7743157622}{2335211601}a^{13}-\frac{5863788676}{2335211601}a^{12}+\frac{8390966946}{778403867}a^{11}+\frac{83416789684}{2335211601}a^{10}-\frac{66147312121}{2335211601}a^{9}-\frac{153847070510}{2335211601}a^{8}-\frac{35550194757}{778403867}a^{7}+\frac{265683678137}{2335211601}a^{6}+\frac{350824419209}{2335211601}a^{5}-\frac{374205108424}{2335211601}a^{4}-\frac{59501222429}{2335211601}a^{3}+\frac{60360812413}{2335211601}a^{2}+\frac{3182486755}{2335211601}a+\frac{1773073186}{2335211601}$, $\frac{1820708782}{2335211601}a^{15}-\frac{1956293659}{2335211601}a^{14}-\frac{5211671732}{2335211601}a^{13}-\frac{1763049965}{778403867}a^{12}+\frac{12701900570}{2335211601}a^{11}+\frac{53919080923}{2335211601}a^{10}-\frac{20861990770}{2335211601}a^{9}-\frac{31643731096}{778403867}a^{8}-\frac{95128299611}{2335211601}a^{7}+\frac{119302685773}{2335211601}a^{6}+\frac{242076524527}{2335211601}a^{5}-\frac{141231025285}{2335211601}a^{4}-\frac{62037047695}{2335211601}a^{3}+\frac{12519283241}{2335211601}a^{2}+\frac{1580538014}{2335211601}a+\frac{1061151912}{778403867}$, $\frac{2162594669}{2335211601}a^{15}-\frac{2886721397}{2335211601}a^{14}-\frac{6405617923}{2335211601}a^{13}-\frac{1260006771}{778403867}a^{12}+\frac{18943262491}{2335211601}a^{11}+\frac{62519718653}{2335211601}a^{10}-\frac{46955960426}{2335211601}a^{9}-\frac{43249749393}{778403867}a^{8}-\frac{74247783895}{2335211601}a^{7}+\frac{210843928202}{2335211601}a^{6}+\frac{290664941327}{2335211601}a^{5}-\frac{294297985580}{2335211601}a^{4}-\frac{128312922008}{2335211601}a^{3}+\frac{101577123235}{2335211601}a^{2}+\frac{18294027133}{2335211601}a-\frac{3117363628}{778403867}$, $\frac{1569077999}{778403867}a^{15}-\frac{6933435230}{2335211601}a^{14}-\frac{11800932172}{2335211601}a^{13}-\frac{8150087681}{2335211601}a^{12}+\frac{13252203175}{778403867}a^{11}+\frac{127116897605}{2335211601}a^{10}-\frac{110693352440}{2335211601}a^{9}-\frac{236537384821}{2335211601}a^{8}-\frac{48797215011}{778403867}a^{7}+\frac{427569101578}{2335211601}a^{6}+\frac{521827313707}{2335211601}a^{5}-\frac{628064617439}{2335211601}a^{4}-\frac{75817881178}{2335211601}a^{3}+\frac{133504796315}{2335211601}a^{2}+\frac{2253376175}{2335211601}a-\frac{5229730036}{2335211601}$, $\frac{206407872}{778403867}a^{15}-\frac{184371254}{778403867}a^{14}-\frac{646652780}{778403867}a^{13}-\frac{769982307}{778403867}a^{12}+\frac{1429407285}{778403867}a^{11}+\frac{6625447844}{778403867}a^{10}-\frac{1019292488}{778403867}a^{9}-\frac{12017254021}{778403867}a^{8}-\frac{14817565072}{778403867}a^{7}+\frac{12186629546}{778403867}a^{6}+\frac{33980156256}{778403867}a^{5}-\frac{6997066555}{778403867}a^{4}-\frac{14457625034}{778403867}a^{3}-\frac{7992116155}{778403867}a^{2}+\frac{2770822919}{778403867}a+\frac{2353676043}{778403867}$, $\frac{1314957721}{778403867}a^{15}-\frac{3748208614}{2335211601}a^{14}-\frac{13395326936}{2335211601}a^{13}-\frac{11391124474}{2335211601}a^{12}+\frac{10287250833}{778403867}a^{11}+\frac{125097378946}{2335211601}a^{10}-\frac{40581400087}{2335211601}a^{9}-\frac{259214217041}{2335211601}a^{8}-\frac{72784587227}{778403867}a^{7}+\frac{315413125037}{2335211601}a^{6}+\frac{643281280298}{2335211601}a^{5}-\frac{332436703306}{2335211601}a^{4}-\frac{388505728433}{2335211601}a^{3}+\frac{123612352693}{2335211601}a^{2}+\frac{63450028366}{2335211601}a-\frac{10011213185}{2335211601}$, $\frac{1955025605}{2335211601}a^{15}-\frac{3208915525}{2335211601}a^{14}-\frac{4602434540}{2335211601}a^{13}-\frac{2421192821}{2335211601}a^{12}+\frac{17836978402}{2335211601}a^{11}+\frac{50392932460}{2335211601}a^{10}-\frac{55919889190}{2335211601}a^{9}-\frac{97270725133}{2335211601}a^{8}-\frac{42008882281}{2335211601}a^{7}+\frac{66648435833}{778403867}a^{6}+\frac{65866085483}{778403867}a^{5}-\frac{309136762546}{2335211601}a^{4}-\frac{7632585157}{778403867}a^{3}+\frac{26679674607}{778403867}a^{2}-\frac{713135881}{778403867}a-\frac{1580380324}{2335211601}$
|
| |
Regulator: | \( 6055.40897697 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 6055.40897697 \cdot 1}{2\cdot\sqrt{38999408308687890625}}\cr\approx \mathstrut & 0.193438944766 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.57293125.2, 8.8.6244950625.1, 8.4.57293125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(29\)
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(109\)
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
109.1.2.1a1.1 | $x^{2} + 109$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
109.1.2.1a1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
109.2.1.0a1.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
109.1.2.1a1.1 | $x^{2} + 109$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
109.2.1.0a1.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
109.1.2.1a1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |