Normalized defining polynomial
\( x^{16} - 4 x^{15} - 6 x^{14} + 36 x^{13} + 6 x^{12} - 112 x^{11} - 14 x^{10} + 208 x^{9} + 22 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(132710400000000000000\)
\(\medspace = 2^{28}\cdot 3^{4}\cdot 5^{14}\)
|
| |
Root discriminant: | \(18.10\) |
| |
Galois root discriminant: | $2^{15/8}3^{1/2}5^{7/8}\approx 25.977097417310098$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{6}$, $\frac{1}{362}a^{15}+\frac{15}{362}a^{14}-\frac{83}{362}a^{13}+\frac{44}{181}a^{12}+\frac{49}{362}a^{11}-\frac{43}{181}a^{10}-\frac{19}{362}a^{9}+\frac{14}{181}a^{8}+\frac{11}{362}a^{7}+\frac{1}{362}a^{6}+\frac{5}{362}a^{5}+\frac{13}{181}a^{4}-\frac{43}{362}a^{3}+\frac{26}{181}a^{2}+\frac{77}{362}a-\frac{81}{181}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{6745}{362}a^{15}-\frac{30593}{362}a^{14}-\frac{24075}{362}a^{13}+\frac{255633}{362}a^{12}-\frac{96293}{362}a^{11}-\frac{703331}{362}a^{10}+\frac{280543}{362}a^{9}+\frac{626027}{181}a^{8}-\frac{517313}{362}a^{7}-\frac{1125229}{362}a^{6}+\frac{499619}{362}a^{5}+\frac{488319}{362}a^{4}-\frac{213291}{362}a^{3}-\frac{129815}{362}a^{2}+\frac{26321}{362}a+\frac{6791}{181}$, $a$, $\frac{6845}{181}a^{15}-\frac{30903}{181}a^{14}-\frac{50451}{362}a^{13}+\frac{519273}{362}a^{12}-\frac{184415}{362}a^{11}-\frac{721162}{181}a^{10}+\frac{275023}{181}a^{9}+\frac{2575411}{362}a^{8}-\frac{511326}{181}a^{7}-\frac{1169836}{181}a^{6}+\frac{1010917}{362}a^{5}+\frac{1028355}{362}a^{4}-\frac{446585}{362}a^{3}-\frac{134570}{181}a^{2}+\frac{27686}{181}a+\frac{27163}{362}$, $\frac{2647}{362}a^{15}-\frac{5759}{181}a^{14}-\frac{5866}{181}a^{13}+\frac{49498}{181}a^{12}-\frac{19441}{362}a^{11}-\frac{286105}{362}a^{10}+\frac{31778}{181}a^{9}+\frac{518471}{362}a^{8}-\frac{124371}{362}a^{7}-\frac{245108}{181}a^{6}+\frac{67524}{181}a^{5}+\frac{117671}{181}a^{4}-\frac{66037}{362}a^{3}-\frac{66343}{362}a^{2}+\frac{3717}{181}a+\frac{6491}{362}$, $a^{15}-4a^{14}-6a^{13}+36a^{12}+6a^{11}-112a^{10}-14a^{9}+208a^{8}+22a^{7}-208a^{6}-14a^{5}+112a^{4}+6a^{3}-36a^{2}-5a+3$, $\frac{3467}{362}a^{15}-\frac{16051}{362}a^{14}-\frac{10831}{362}a^{13}+\frac{132241}{362}a^{12}-\frac{30989}{181}a^{11}-\frac{177136}{181}a^{10}+\frac{176305}{362}a^{9}+\frac{623243}{362}a^{8}-\frac{320605}{362}a^{7}-\frac{541343}{362}a^{6}+\frac{300057}{362}a^{5}+\frac{215937}{362}a^{4}-\frac{61056}{181}a^{3}-\frac{25698}{181}a^{2}+\frac{14645}{362}a+\frac{4695}{362}$, $\frac{8980}{181}a^{15}-\frac{41051}{181}a^{14}-\frac{30390}{181}a^{13}+\frac{340455}{181}a^{12}-\frac{140628}{181}a^{11}-\frac{923958}{181}a^{10}+\frac{801051}{362}a^{9}+\frac{3271275}{362}a^{8}-\frac{732372}{181}a^{7}-\frac{1443726}{181}a^{6}+\frac{691251}{181}a^{5}+\frac{606702}{181}a^{4}-\frac{286047}{181}a^{3}-\frac{159300}{181}a^{2}+\frac{69041}{362}a+\frac{32635}{362}$, $\frac{2005}{362}a^{15}-\frac{4058}{181}a^{14}-\frac{6011}{181}a^{13}+\frac{37359}{181}a^{12}+\frac{4325}{181}a^{11}-\frac{119881}{181}a^{10}-\frac{2257}{362}a^{9}+\frac{224998}{181}a^{8}-\frac{13783}{362}a^{7}-\frac{235112}{181}a^{6}+\frac{28633}{181}a^{5}+\frac{127968}{181}a^{4}-\frac{25098}{181}a^{3}-\frac{36922}{181}a^{2}+\frac{7413}{362}a+\frac{3753}{181}$, $\frac{1361}{181}a^{15}-\frac{5649}{181}a^{14}-\frac{14699}{362}a^{13}+\frac{50264}{181}a^{12}+\frac{1429}{362}a^{11}-\frac{153970}{181}a^{10}+\frac{9641}{362}a^{9}+\frac{573423}{362}a^{8}-\frac{15980}{181}a^{7}-\frac{288782}{181}a^{6}+\frac{59403}{362}a^{5}+\frac{156475}{181}a^{4}-\frac{42655}{362}a^{3}-\frac{49593}{181}a^{2}+\frac{4883}{362}a+\frac{10993}{362}$, $\frac{6443}{181}a^{15}-\frac{29150}{181}a^{14}-\frac{46707}{362}a^{13}+\frac{244080}{181}a^{12}-\frac{89371}{181}a^{11}-\frac{673739}{181}a^{10}+\frac{262570}{181}a^{9}+\frac{2398325}{362}a^{8}-\frac{485702}{181}a^{7}-\frac{1078833}{181}a^{6}+\frac{947891}{362}a^{5}+\frac{466168}{181}a^{4}-\frac{204830}{181}a^{3}-\frac{121265}{181}a^{2}+\frac{24425}{181}a+\frac{23833}{362}$, $\frac{33491}{362}a^{15}-\frac{76156}{181}a^{14}-\frac{117605}{362}a^{13}+\frac{1270605}{362}a^{12}-\frac{247461}{181}a^{11}-\frac{3483861}{362}a^{10}+\frac{1442275}{362}a^{9}+\frac{6186205}{362}a^{8}-\frac{2659005}{362}a^{7}-\frac{2763505}{181}a^{6}+\frac{2570773}{362}a^{5}+\frac{2356957}{362}a^{4}-\frac{550188}{181}a^{3}-\frac{608029}{362}a^{2}+\frac{135307}{362}a+\frac{60749}{362}$
|
| |
Regulator: | \( 13147.1416221 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 13147.1416221 \cdot 1}{2\cdot\sqrt{132710400000000000000}}\cr\approx \mathstrut & 0.227671309352 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.2000.1, \(\Q(\zeta_{20})^+\), 4.2.400.1, 8.4.2880000000.2, 8.4.2880000000.1, 8.4.64000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.8294400000000000000.3 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.28a19.2 | $x^{16} + 10 x^{15} + 50 x^{14} + 168 x^{13} + 420 x^{12} + 826 x^{11} + 1318 x^{10} + 1742 x^{9} + 1931 x^{8} + 1810 x^{7} + 1438 x^{6} + 966 x^{5} + 542 x^{4} + 248 x^{3} + 88 x^{2} + 26 x + 5$ | $8$ | $2$ | $28$ | 16T172 | $$[2, 2, 2, 2]^{4}$$ |
\(3\)
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(5\)
| 5.2.8.14a1.5 | $x^{16} + 32 x^{15} + 464 x^{14} + 4032 x^{13} + 23408 x^{12} + 95872 x^{11} + 285376 x^{10} + 627456 x^{9} + 1027168 x^{8} + 1254912 x^{7} + 1141504 x^{6} + 766976 x^{5} + 374528 x^{4} + 129024 x^{3} + 29696 x^{2} + 4106 x + 266$ | $8$ | $2$ | $14$ | $C_8: C_2$ | $$[\ ]_{8}^{2}$$ |