Normalized defining polynomial
\( x^{16} - 16x^{14} - 116x^{12} + 1888x^{10} - 98x^{8} - 26832x^{6} - 16516x^{4} + 3008x^{2} + 2209 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(12725851295326073899065850986496\)
\(\medspace = 2^{70}\cdot 47^{6}\)
|
| |
Root discriminant: | \(87.91\) |
| |
Galois root discriminant: | $2^{305/64}47^{1/2}\approx 186.48547112066305$ | ||
Ramified primes: |
\(2\), \(47\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{188}a^{12}+\frac{2}{47}a^{10}+\frac{29}{188}a^{8}+\frac{23}{94}a^{6}-\frac{75}{188}a^{4}+\frac{19}{94}a^{2}-\frac{1}{4}$, $\frac{1}{188}a^{13}+\frac{2}{47}a^{11}+\frac{29}{188}a^{9}+\frac{23}{94}a^{7}-\frac{75}{188}a^{5}+\frac{19}{94}a^{3}-\frac{1}{4}a$, $\frac{1}{28407576008164}a^{14}+\frac{97945945}{151104127703}a^{12}-\frac{3834055528039}{28407576008164}a^{10}-\frac{603399376270}{7101894002041}a^{8}+\frac{1634445620901}{28407576008164}a^{6}+\frac{2545193430783}{14203788004082}a^{4}+\frac{12957544923297}{28407576008164}a^{2}-\frac{14019893447}{302208255406}$, $\frac{1}{28407576008164}a^{15}+\frac{97945945}{151104127703}a^{13}+\frac{1633919237001}{14203788004082}a^{11}-\frac{1}{4}a^{10}+\frac{4688296496961}{28407576008164}a^{9}-\frac{1}{4}a^{8}+\frac{1634445620901}{28407576008164}a^{7}+\frac{2545193430783}{14203788004082}a^{5}+\frac{1463912730314}{7101894002041}a^{3}+\frac{1}{4}a^{2}-\frac{179143914597}{604416510812}a+\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1146972}{7727849839}a^{14}-\frac{18025867}{7727849839}a^{12}-\frac{138468992}{7727849839}a^{10}+\frac{4260356393}{15455699678}a^{8}+\frac{542260568}{7727849839}a^{6}-\frac{31101201656}{7727849839}a^{4}-\frac{30265222288}{7727849839}a^{2}+\frac{485786665}{328844674}$, $\frac{7929915033}{14203788004082}a^{14}-\frac{259114732713}{28407576008164}a^{12}-\frac{874546419297}{14203788004082}a^{10}+\frac{30482267166475}{28407576008164}a^{8}-\frac{6104169418183}{14203788004082}a^{6}-\frac{415551497269639}{28407576008164}a^{4}-\frac{59719349553961}{14203788004082}a^{2}+\frac{1507333469879}{604416510812}$, $\frac{7561748043}{7101894002041}a^{14}-\frac{500276323933}{28407576008164}a^{12}-\frac{809655859980}{7101894002041}a^{10}+\frac{58848886274823}{28407576008164}a^{8}-\frac{8653045501004}{7101894002041}a^{6}-\frac{792756105294791}{28407576008164}a^{4}-\frac{20652792146347}{7101894002041}a^{2}+\frac{2624128559431}{604416510812}$, $\frac{4500718925}{14203788004082}a^{14}-\frac{139032506339}{28407576008164}a^{12}-\frac{565532408231}{14203788004082}a^{10}+\frac{16523888574647}{28407576008164}a^{8}+\frac{2298363455718}{7101894002041}a^{6}-\frac{251861151680195}{28407576008164}a^{4}-\frac{64799708269950}{7101894002041}a^{2}-\frac{1472984171879}{604416510812}$, $\frac{9937450108}{7101894002041}a^{14}-\frac{161964366185}{7101894002041}a^{12}-\frac{2202785837963}{14203788004082}a^{10}+\frac{19062716879145}{7101894002041}a^{8}-\frac{7195276504820}{7101894002041}a^{6}-\frac{262190213922503}{7101894002041}a^{4}-\frac{153386006050819}{14203788004082}a^{2}+\frac{893344708837}{151104127703}$, $\frac{106034709499}{28407576008164}a^{14}-\frac{438634994719}{7101894002041}a^{12}-\frac{11331057173077}{28407576008164}a^{10}+\frac{103138086467773}{14203788004082}a^{8}-\frac{124615023044357}{28407576008164}a^{6}-\frac{13\cdots 53}{14203788004082}a^{4}-\frac{219948419521165}{28407576008164}a^{2}+\frac{1704908162957}{151104127703}$, $\frac{13490354199}{28407576008164}a^{14}-\frac{202221326165}{28407576008164}a^{12}-\frac{1790723308719}{28407576008164}a^{10}+\frac{23953462047503}{28407576008164}a^{8}+\frac{25942777618683}{28407576008164}a^{6}-\frac{367727340568025}{28407576008164}a^{4}-\frac{638229939831391}{28407576008164}a^{2}-\frac{5052080000751}{604416510812}$, $\frac{4733851224}{7101894002041}a^{15}+\frac{2834620719}{7101894002041}a^{14}-\frac{238908665985}{28407576008164}a^{13}-\frac{191476164799}{14203788004082}a^{12}-\frac{685726024760}{7101894002041}a^{11}+\frac{318926532521}{14203788004082}a^{10}+\frac{24130411608397}{28407576008164}a^{9}+\frac{27832710178959}{14203788004082}a^{8}+\frac{16904489611883}{14203788004082}a^{7}-\frac{38266329771623}{7101894002041}a^{6}-\frac{233356165589561}{28407576008164}a^{5}-\frac{494857746735145}{14203788004082}a^{4}-\frac{70932772383857}{14203788004082}a^{3}+\frac{42991457847367}{14203788004082}a^{2}+\frac{152408463287}{604416510812}a+\frac{1945080515549}{302208255406}$, $\frac{202045620007}{14203788004082}a^{15}+\frac{449173218911}{14203788004082}a^{14}-\frac{2113634207803}{14203788004082}a^{13}-\frac{4430434149499}{14203788004082}a^{12}-\frac{34561938028211}{14203788004082}a^{11}-\frac{39779849350723}{7101894002041}a^{10}+\frac{184105676994779}{14203788004082}a^{9}+\frac{181271076132007}{7101894002041}a^{8}+\frac{898673618994349}{14203788004082}a^{7}+\frac{22\cdots 67}{14203788004082}a^{6}+\frac{56742326390953}{14203788004082}a^{5}+\frac{13\cdots 15}{14203788004082}a^{4}-\frac{303355418704273}{14203788004082}a^{3}-\frac{76832376734136}{7101894002041}a^{2}-\frac{1175306507903}{302208255406}a-\frac{1670221383674}{151104127703}$, $\frac{3634802672675}{28407576008164}a^{15}+\frac{2252510645541}{28407576008164}a^{14}-\frac{57046381790581}{28407576008164}a^{13}-\frac{34782800920015}{28407576008164}a^{12}-\frac{440095459079677}{28407576008164}a^{11}-\frac{278335238586901}{28407576008164}a^{10}+\frac{67\cdots 47}{28407576008164}a^{9}+\frac{40\cdots 63}{28407576008164}a^{8}+\frac{18\cdots 85}{28407576008164}a^{7}+\frac{16\cdots 59}{28407576008164}a^{6}-\frac{97\cdots 15}{28407576008164}a^{5}-\frac{57\cdots 89}{28407576008164}a^{4}-\frac{95\cdots 35}{28407576008164}a^{3}-\frac{12\cdots 69}{604416510812}a^{2}-\frac{485187290312833}{604416510812}a-\frac{291401934972753}{604416510812}$, $\frac{7757395686610}{7101894002041}a^{15}+\frac{4631226061310}{7101894002041}a^{14}-\frac{242717643472859}{14203788004082}a^{13}-\frac{144960283330669}{14203788004082}a^{12}-\frac{40133322971387}{302208255406}a^{11}-\frac{562972136889804}{7101894002041}a^{10}+\frac{28\cdots 11}{14203788004082}a^{9}+\frac{85\cdots 43}{7101894002041}a^{8}+\frac{86\cdots 23}{14203788004082}a^{7}+\frac{25\cdots 87}{7101894002041}a^{6}-\frac{20\cdots 00}{7101894002041}a^{5}-\frac{24\cdots 39}{14203788004082}a^{4}-\frac{20\cdots 41}{7101894002041}a^{3}-\frac{12\cdots 63}{7101894002041}a^{2}-\frac{10\cdots 12}{151104127703}a-\frac{612351106728126}{151104127703}$
|
| |
Regulator: | \( 7025756974.37 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 7025756974.37 \cdot 1}{2\cdot\sqrt{12725851295326073899065850986496}}\cr\approx \mathstrut & 0.392897390354 \end{aligned}\] (assuming GRH)
Galois group
$C_4^2.(C_2\times C_4)$ (as 16T362):
A solvable group of order 128 |
The 14 conjugacy class representatives for $C_4^2.(C_2\times C_4)$ |
Character table for $C_4^2.(C_2\times C_4)$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.592973922304.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Arithmetically equivalent siblings: | data not computed |
Minimal sibling: | 16.8.12725851295326073899065850986496.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.70e1.3585 | $x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 56 x^{4} + 2$ | $16$ | $1$ | $70$ | 16T362 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]$$ |
\(47\)
| $\Q_{47}$ | $x + 42$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{47}$ | $x + 42$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{47}$ | $x + 42$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{47}$ | $x + 42$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |