Properties

Label 16.8.106...416.1
Degree $16$
Signature $[8, 4]$
Discriminant $1.063\times 10^{26}$
Root discriminant \(42.33\)
Ramified primes $2,7$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^3.D_4$ (as 16T153)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 + 8*x^14 - 16*x^13 - 212*x^12 + 368*x^11 - 224*x^10 + 592*x^9 + 2964*x^8 - 13056*x^7 + 23912*x^6 - 24688*x^5 + 14656*x^4 - 4512*x^3 + 368*x^2 + 80*x - 2)
 
Copy content gp:K = bnfinit(y^16 + 8*y^14 - 16*y^13 - 212*y^12 + 368*y^11 - 224*y^10 + 592*y^9 + 2964*y^8 - 13056*y^7 + 23912*y^6 - 24688*y^5 + 14656*y^4 - 4512*y^3 + 368*y^2 + 80*y - 2, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 8*x^14 - 16*x^13 - 212*x^12 + 368*x^11 - 224*x^10 + 592*x^9 + 2964*x^8 - 13056*x^7 + 23912*x^6 - 24688*x^5 + 14656*x^4 - 4512*x^3 + 368*x^2 + 80*x - 2);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 + 8*x^14 - 16*x^13 - 212*x^12 + 368*x^11 - 224*x^10 + 592*x^9 + 2964*x^8 - 13056*x^7 + 23912*x^6 - 24688*x^5 + 14656*x^4 - 4512*x^3 + 368*x^2 + 80*x - 2)
 

\( x^{16} + 8 x^{14} - 16 x^{13} - 212 x^{12} + 368 x^{11} - 224 x^{10} + 592 x^{9} + 2964 x^{8} - 13056 x^{7} + \cdots - 2 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[8, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(106341808682864896865468416\) \(\medspace = 2^{64}\cdot 7^{8}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(42.33\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{137/32}7^{3/4}\approx 83.67740413998479$
Ramified primes:   \(2\), \(7\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3}a^{12}+\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{11}+\frac{1}{3}a^{10}-\frac{1}{3}a^{9}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{3}a^{14}+\frac{1}{3}a^{11}+\frac{1}{3}a^{10}-\frac{1}{3}a^{9}+\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{36\cdots 77}a^{15}+\frac{60\cdots 35}{36\cdots 77}a^{14}+\frac{49\cdots 83}{36\cdots 77}a^{13}-\frac{57\cdots 79}{36\cdots 77}a^{12}-\frac{16\cdots 89}{36\cdots 77}a^{11}+\frac{31\cdots 71}{36\cdots 77}a^{10}-\frac{14\cdots 11}{36\cdots 77}a^{9}+\frac{23\cdots 70}{36\cdots 77}a^{8}+\frac{12\cdots 73}{36\cdots 77}a^{7}+\frac{12\cdots 82}{36\cdots 77}a^{6}-\frac{14\cdots 23}{36\cdots 77}a^{5}-\frac{21\cdots 27}{36\cdots 77}a^{4}-\frac{26\cdots 32}{12\cdots 59}a^{3}-\frac{15\cdots 01}{36\cdots 77}a^{2}-\frac{55\cdots 12}{12\cdots 59}a+\frac{14\cdots 18}{36\cdots 77}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{19\cdots 84}{11\cdots 91}a^{15}+\frac{31\cdots 54}{36\cdots 97}a^{14}+\frac{15\cdots 20}{11\cdots 91}a^{13}-\frac{77\cdots 28}{36\cdots 97}a^{12}-\frac{42\cdots 12}{11\cdots 91}a^{11}+\frac{49\cdots 96}{11\cdots 91}a^{10}-\frac{11\cdots 00}{11\cdots 91}a^{9}+\frac{10\cdots 09}{11\cdots 91}a^{8}+\frac{62\cdots 72}{11\cdots 91}a^{7}-\frac{22\cdots 96}{11\cdots 91}a^{6}+\frac{33\cdots 16}{11\cdots 91}a^{5}-\frac{92\cdots 02}{36\cdots 97}a^{4}+\frac{10\cdots 92}{11\cdots 91}a^{3}-\frac{32\cdots 72}{36\cdots 97}a^{2}-\frac{18\cdots 12}{11\cdots 91}a-\frac{26\cdots 99}{11\cdots 91}$, $\frac{59\cdots 58}{36\cdots 77}a^{15}+\frac{87\cdots 77}{12\cdots 59}a^{14}+\frac{14\cdots 52}{12\cdots 59}a^{13}+\frac{96\cdots 13}{36\cdots 77}a^{12}-\frac{17\cdots 38}{36\cdots 77}a^{11}-\frac{11\cdots 45}{12\cdots 59}a^{10}+\frac{93\cdots 52}{36\cdots 77}a^{9}+\frac{65\cdots 56}{12\cdots 59}a^{8}+\frac{31\cdots 20}{36\cdots 77}a^{7}-\frac{18\cdots 60}{36\cdots 77}a^{6}-\frac{74\cdots 90}{12\cdots 59}a^{5}+\frac{15\cdots 11}{12\cdots 59}a^{4}-\frac{16\cdots 00}{12\cdots 59}a^{3}+\frac{22\cdots 18}{36\cdots 77}a^{2}-\frac{77\cdots 84}{12\cdots 59}a-\frac{38\cdots 41}{36\cdots 77}$, $\frac{17\cdots 52}{36\cdots 77}a^{15}-\frac{14\cdots 85}{36\cdots 77}a^{14}+\frac{12\cdots 12}{36\cdots 77}a^{13}-\frac{39\cdots 78}{36\cdots 77}a^{12}-\frac{34\cdots 22}{36\cdots 77}a^{11}+\frac{93\cdots 22}{36\cdots 77}a^{10}-\frac{73\cdots 02}{36\cdots 77}a^{9}+\frac{12\cdots 39}{36\cdots 77}a^{8}+\frac{14\cdots 90}{12\cdots 59}a^{7}-\frac{27\cdots 59}{36\cdots 77}a^{6}+\frac{56\cdots 74}{36\cdots 77}a^{5}-\frac{69\cdots 71}{36\cdots 77}a^{4}+\frac{51\cdots 08}{36\cdots 77}a^{3}-\frac{70\cdots 28}{12\cdots 59}a^{2}+\frac{10\cdots 66}{12\cdots 59}a+\frac{26\cdots 55}{36\cdots 77}$, $\frac{19\cdots 30}{12\cdots 59}a^{15}+\frac{16\cdots 61}{12\cdots 59}a^{14}+\frac{46\cdots 84}{36\cdots 77}a^{13}-\frac{85\cdots 61}{36\cdots 77}a^{12}-\frac{12\cdots 26}{36\cdots 77}a^{11}+\frac{19\cdots 47}{36\cdots 77}a^{10}-\frac{43\cdots 84}{12\cdots 59}a^{9}+\frac{33\cdots 55}{36\cdots 77}a^{8}+\frac{57\cdots 88}{12\cdots 59}a^{7}-\frac{72\cdots 52}{36\cdots 77}a^{6}+\frac{13\cdots 22}{36\cdots 77}a^{5}-\frac{45\cdots 05}{12\cdots 59}a^{4}+\frac{83\cdots 24}{36\cdots 77}a^{3}-\frac{25\cdots 70}{36\cdots 77}a^{2}+\frac{17\cdots 88}{36\cdots 77}a+\frac{61\cdots 19}{36\cdots 77}$, $\frac{15\cdots 14}{36\cdots 77}a^{15}+\frac{88\cdots 19}{36\cdots 77}a^{14}+\frac{13\cdots 73}{36\cdots 77}a^{13}-\frac{60\cdots 19}{12\cdots 59}a^{12}-\frac{34\cdots 52}{36\cdots 77}a^{11}+\frac{39\cdots 19}{36\cdots 77}a^{10}-\frac{42\cdots 74}{12\cdots 59}a^{9}+\frac{84\cdots 92}{36\cdots 77}a^{8}+\frac{17\cdots 48}{12\cdots 59}a^{7}-\frac{17\cdots 15}{36\cdots 77}a^{6}+\frac{28\cdots 84}{36\cdots 77}a^{5}-\frac{23\cdots 39}{36\cdots 77}a^{4}+\frac{30\cdots 82}{12\cdots 59}a^{3}-\frac{54\cdots 95}{36\cdots 77}a^{2}-\frac{21\cdots 88}{12\cdots 59}a-\frac{33\cdots 39}{12\cdots 59}$, $\frac{49\cdots 38}{36\cdots 77}a^{15}+\frac{67\cdots 97}{36\cdots 77}a^{14}+\frac{43\cdots 61}{36\cdots 77}a^{13}-\frac{74\cdots 56}{12\cdots 59}a^{12}-\frac{11\cdots 92}{36\cdots 77}a^{11}+\frac{33\cdots 77}{36\cdots 77}a^{10}+\frac{47\cdots 18}{36\cdots 77}a^{9}+\frac{24\cdots 70}{36\cdots 77}a^{8}+\frac{60\cdots 24}{12\cdots 59}a^{7}-\frac{42\cdots 53}{36\cdots 77}a^{6}+\frac{43\cdots 68}{36\cdots 77}a^{5}-\frac{22\cdots 93}{12\cdots 59}a^{4}-\frac{67\cdots 94}{12\cdots 59}a^{3}+\frac{55\cdots 79}{12\cdots 59}a^{2}-\frac{37\cdots 72}{36\cdots 77}a-\frac{10\cdots 77}{12\cdots 59}$, $\frac{54\cdots 44}{12\cdots 59}a^{15}+\frac{58\cdots 09}{36\cdots 77}a^{14}+\frac{44\cdots 81}{12\cdots 59}a^{13}-\frac{21\cdots 47}{36\cdots 77}a^{12}-\frac{35\cdots 54}{36\cdots 77}a^{11}+\frac{47\cdots 65}{36\cdots 77}a^{10}-\frac{70\cdots 46}{12\cdots 59}a^{9}+\frac{30\cdots 67}{12\cdots 59}a^{8}+\frac{51\cdots 98}{36\cdots 77}a^{7}-\frac{19\cdots 38}{36\cdots 77}a^{6}+\frac{32\cdots 66}{36\cdots 77}a^{5}-\frac{99\cdots 70}{12\cdots 59}a^{4}+\frac{15\cdots 90}{36\cdots 77}a^{3}-\frac{39\cdots 43}{36\cdots 77}a^{2}+\frac{10\cdots 66}{12\cdots 59}a+\frac{68\cdots 57}{12\cdots 59}$, $\frac{58\cdots 40}{36\cdots 77}a^{15}+\frac{95\cdots 63}{36\cdots 77}a^{14}+\frac{15\cdots 62}{12\cdots 59}a^{13}-\frac{85\cdots 18}{36\cdots 77}a^{12}-\frac{41\cdots 79}{12\cdots 59}a^{11}+\frac{19\cdots 43}{36\cdots 77}a^{10}-\frac{35\cdots 37}{12\cdots 59}a^{9}+\frac{33\cdots 73}{36\cdots 77}a^{8}+\frac{59\cdots 26}{12\cdots 59}a^{7}-\frac{24\cdots 18}{12\cdots 59}a^{6}+\frac{12\cdots 64}{36\cdots 77}a^{5}-\frac{12\cdots 56}{36\cdots 77}a^{4}+\frac{69\cdots 33}{36\cdots 77}a^{3}-\frac{18\cdots 30}{36\cdots 77}a^{2}+\frac{53\cdots 52}{36\cdots 77}a+\frac{44\cdots 27}{36\cdots 77}$, $\frac{35\cdots 93}{36\cdots 77}a^{15}+\frac{14\cdots 14}{12\cdots 59}a^{14}+\frac{10\cdots 40}{12\cdots 59}a^{13}-\frac{20\cdots 79}{36\cdots 77}a^{12}-\frac{80\cdots 68}{36\cdots 77}a^{11}+\frac{11\cdots 07}{12\cdots 59}a^{10}+\frac{92\cdots 64}{36\cdots 77}a^{9}+\frac{62\cdots 59}{12\cdots 59}a^{8}+\frac{12\cdots 70}{36\cdots 77}a^{7}-\frac{31\cdots 37}{36\cdots 77}a^{6}+\frac{13\cdots 12}{12\cdots 59}a^{5}-\frac{63\cdots 70}{12\cdots 59}a^{4}-\frac{45\cdots 17}{12\cdots 59}a^{3}+\frac{50\cdots 06}{36\cdots 77}a^{2}-\frac{35\cdots 70}{12\cdots 59}a-\frac{13\cdots 53}{36\cdots 77}$, $\frac{63\cdots 74}{36\cdots 77}a^{15}+\frac{21\cdots 96}{12\cdots 59}a^{14}+\frac{50\cdots 80}{36\cdots 77}a^{13}-\frac{31\cdots 71}{12\cdots 59}a^{12}-\frac{13\cdots 65}{36\cdots 77}a^{11}+\frac{21\cdots 11}{36\cdots 77}a^{10}-\frac{12\cdots 73}{36\cdots 77}a^{9}+\frac{36\cdots 51}{36\cdots 77}a^{8}+\frac{19\cdots 65}{36\cdots 77}a^{7}-\frac{80\cdots 10}{36\cdots 77}a^{6}+\frac{14\cdots 88}{36\cdots 77}a^{5}-\frac{48\cdots 85}{12\cdots 59}a^{4}+\frac{83\cdots 15}{36\cdots 77}a^{3}-\frac{82\cdots 20}{12\cdots 59}a^{2}+\frac{15\cdots 28}{36\cdots 77}a+\frac{56\cdots 21}{36\cdots 77}$, $\frac{66\cdots 35}{12\cdots 59}a^{15}-\frac{51\cdots 30}{12\cdots 59}a^{14}+\frac{16\cdots 53}{36\cdots 77}a^{13}-\frac{33\cdots 51}{36\cdots 77}a^{12}-\frac{42\cdots 25}{36\cdots 77}a^{11}+\frac{25\cdots 16}{12\cdots 59}a^{10}-\frac{51\cdots 42}{36\cdots 77}a^{9}+\frac{12\cdots 84}{36\cdots 77}a^{8}+\frac{19\cdots 27}{12\cdots 59}a^{7}-\frac{26\cdots 01}{36\cdots 77}a^{6}+\frac{16\cdots 16}{12\cdots 59}a^{5}-\frac{53\cdots 15}{36\cdots 77}a^{4}+\frac{34\cdots 75}{36\cdots 77}a^{3}-\frac{12\cdots 80}{36\cdots 77}a^{2}+\frac{64\cdots 46}{12\cdots 59}a-\frac{39\cdots 03}{36\cdots 77}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 17878940.9848 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 17878940.9848 \cdot 1}{2\cdot\sqrt{106341808682864896865468416}}\cr\approx \mathstrut & 0.345875032239 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 + 8*x^14 - 16*x^13 - 212*x^12 + 368*x^11 - 224*x^10 + 592*x^9 + 2964*x^8 - 13056*x^7 + 23912*x^6 - 24688*x^5 + 14656*x^4 - 4512*x^3 + 368*x^2 + 80*x - 2) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 + 8*x^14 - 16*x^13 - 212*x^12 + 368*x^11 - 224*x^10 + 592*x^9 + 2964*x^8 - 13056*x^7 + 23912*x^6 - 24688*x^5 + 14656*x^4 - 4512*x^3 + 368*x^2 + 80*x - 2, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 8*x^14 - 16*x^13 - 212*x^12 + 368*x^11 - 224*x^10 + 592*x^9 + 2964*x^8 - 13056*x^7 + 23912*x^6 - 24688*x^5 + 14656*x^4 - 4512*x^3 + 368*x^2 + 80*x - 2); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 8*x^14 - 16*x^13 - 212*x^12 + 368*x^11 - 224*x^10 + 592*x^9 + 2964*x^8 - 13056*x^7 + 23912*x^6 - 24688*x^5 + 14656*x^4 - 4512*x^3 + 368*x^2 + 80*x - 2); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3.D_4$ (as 16T153):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 64
The 13 conjugacy class representatives for $C_2^3.D_4$
Character table for $C_2^3.D_4$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.7168.1, \(\Q(\zeta_{16})^+\), 4.4.14336.1, 8.8.3288334336.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: 16.8.1302687156365094986601988096.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{4}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ R ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.16.64l1.148$x^{16} + 4 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 16 x + 2$$16$$1$$64$16T153$$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$$
\(7\) Copy content Toggle raw display 7.4.1.0a1.1$x^{4} + 5 x^{2} + 4 x + 3$$1$$4$$0$$C_4$$$[\ ]^{4}$$
7.2.2.2a1.1$x^{4} + 12 x^{3} + 42 x^{2} + 43 x + 9$$2$$2$$2$$C_4$$$[\ ]_{2}^{2}$$
7.2.4.6a1.3$x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2646 x^{4} + 3240 x^{3} + 2052 x^{2} + 655 x + 109$$4$$2$$6$$Q_8$$$[\ ]_{4}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)