Normalized defining polynomial
\( x^{16} - 16x^{14} + 100x^{12} - 304x^{10} + 468x^{8} - 512x^{6} + 472x^{4} - 224x^{2} + 4 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[4, 6]$ |
| |
Discriminant: |
\(7745861623526935561764864\)
\(\medspace = 2^{70}\cdot 3^{8}\)
|
| |
Root discriminant: | \(35.94\) |
| |
Galois root discriminant: | $2^{2645/512}3^{1/2}\approx 62.185093055303284$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{12}a^{12}-\frac{1}{12}a^{10}-\frac{1}{2}a^{4}-\frac{1}{6}a^{2}+\frac{1}{3}$, $\frac{1}{24}a^{13}+\frac{1}{12}a^{11}-\frac{1}{2}a^{7}-\frac{1}{4}a^{5}+\frac{1}{6}a^{3}-\frac{1}{3}a$, $\frac{1}{160008}a^{14}+\frac{2945}{80004}a^{12}+\frac{1421}{20001}a^{10}-\frac{455}{6667}a^{8}-\frac{8305}{26668}a^{6}-\frac{10445}{40002}a^{4}-\frac{828}{6667}a^{2}+\frac{3535}{20001}$, $\frac{1}{160008}a^{15}-\frac{259}{53336}a^{13}-\frac{983}{80004}a^{11}-\frac{455}{6667}a^{9}+\frac{5029}{26668}a^{7}-\frac{889}{80004}a^{5}-\frac{11635}{40002}a^{3}-\frac{9799}{20001}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{955}{80004}a^{14}+\frac{3833}{20001}a^{12}-\frac{47951}{40002}a^{10}+\frac{96031}{26668}a^{8}-\frac{69125}{13334}a^{6}+\frac{94481}{20001}a^{4}-\frac{25267}{6667}a^{2}+\frac{76979}{40002}$, $\frac{7195}{53336}a^{15}-\frac{344057}{160008}a^{13}+\frac{534863}{40002}a^{11}-\frac{1076123}{26668}a^{9}+\frac{1638953}{26668}a^{7}-\frac{1782791}{26668}a^{5}+\frac{1198934}{20001}a^{3}-\frac{1075067}{40002}a$, $\frac{11243}{160008}a^{15}-\frac{58461}{53336}a^{13}+\frac{264355}{40002}a^{11}-\frac{507929}{26668}a^{9}+\frac{724923}{26668}a^{7}-\frac{2394647}{80004}a^{5}+\frac{527144}{20001}a^{3}-\frac{429319}{40002}a$, $\frac{955}{80004}a^{14}+\frac{3833}{20001}a^{12}-\frac{47951}{40002}a^{10}+\frac{96031}{26668}a^{8}-\frac{69125}{13334}a^{6}+\frac{94481}{20001}a^{4}-\frac{25267}{6667}a^{2}-\frac{3025}{40002}$, $\frac{2581}{53336}a^{15}-\frac{5833}{160008}a^{14}+\frac{4834}{6667}a^{13}+\frac{10669}{20001}a^{12}-\frac{27419}{6667}a^{11}-\frac{116563}{40002}a^{10}+\frac{284903}{26668}a^{9}+\frac{47218}{6667}a^{8}-\frac{337617}{26668}a^{7}-\frac{199367}{26668}a^{6}+\frac{95270}{6667}a^{5}+\frac{191329}{20001}a^{4}-\frac{75787}{6667}a^{3}-\frac{50520}{6667}a^{2}+\frac{26577}{13334}a+\frac{1376}{20001}$, $\frac{249}{26668}a^{15}+\frac{719}{80004}a^{14}-\frac{6927}{53336}a^{13}-\frac{11969}{80004}a^{12}+\frac{8579}{13334}a^{11}+\frac{13309}{13334}a^{10}-\frac{32279}{26668}a^{9}-\frac{90367}{26668}a^{8}+\frac{1571}{6667}a^{7}+\frac{82341}{13334}a^{6}-\frac{9367}{26668}a^{5}-\frac{279173}{40002}a^{4}+\frac{3030}{6667}a^{3}+\frac{101525}{20001}a^{2}+\frac{7351}{13334}a-\frac{22395}{13334}$, $\frac{1653}{13334}a^{15}+\frac{1751}{160008}a^{14}+\frac{79621}{40002}a^{13}-\frac{16897}{80004}a^{12}-\frac{497785}{40002}a^{11}+\frac{20921}{13334}a^{10}+\frac{999765}{26668}a^{9}-\frac{36667}{6667}a^{8}-\frac{370916}{6667}a^{7}+\frac{232017}{26668}a^{6}+\frac{382796}{6667}a^{5}-\frac{248293}{40002}a^{4}-\frac{1116562}{20001}a^{3}+\frac{197410}{20001}a^{2}+\frac{813199}{40002}a-\frac{1286}{6667}$, $\frac{10229}{160008}a^{15}+\frac{691}{40002}a^{14}-\frac{77105}{80004}a^{13}-\frac{5107}{20001}a^{12}+\frac{438751}{80004}a^{11}+\frac{27449}{20001}a^{10}-\frac{93967}{6667}a^{9}-\frac{76899}{26668}a^{8}+\frac{412423}{26668}a^{7}+\frac{1532}{6667}a^{6}-\frac{636595}{40002}a^{5}+\frac{85736}{20001}a^{4}+\frac{241635}{13334}a^{3}-\frac{21812}{6667}a^{2}-\frac{162301}{20001}a-\frac{39499}{40002}$, $\frac{8423}{160008}a^{15}-\frac{558}{6667}a^{14}-\frac{34421}{40002}a^{13}+\frac{34179}{26668}a^{12}+\frac{74549}{13334}a^{11}-\frac{49696}{6667}a^{10}-\frac{244559}{13334}a^{9}+\frac{525581}{26668}a^{8}+\frac{877193}{26668}a^{7}-\frac{142924}{6667}a^{6}-\frac{816959}{20001}a^{5}+\frac{190825}{13334}a^{4}+\frac{665014}{20001}a^{3}-\frac{58648}{6667}a^{2}-\frac{73176}{6667}a+\frac{21099}{13334}$
|
| |
Regulator: | \( 2828671.074661715 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 2828671.074661715 \cdot 1}{2\cdot\sqrt{7745861623526935561764864}}\cr\approx \mathstrut & 0.500284191149034 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{3}) \), 4.2.4608.2, 8.2.10871635968.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{5}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.70b1.15155 | $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 32 x^{6} + 32 x^{5} + 8 x^{4} + 6$ | $16$ | $1$ | $70$ | 16T1455 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}, \frac{43}{8}]^{2}$$ |
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |