Properties

Label 16.4.774...864.186
Degree $16$
Signature $[4, 6]$
Discriminant $7.746\times 10^{24}$
Root discriminant \(35.94\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_4^2.(C_2\times C_4)$ (as 16T362)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 72*x^12 + 324*x^8 + 11664*x^4 + 26244)
 
Copy content gp:K = bnfinit(y^16 - 72*y^12 + 324*y^8 + 11664*y^4 + 26244, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 72*x^12 + 324*x^8 + 11664*x^4 + 26244);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 72*x^12 + 324*x^8 + 11664*x^4 + 26244)
 

\( x^{16} - 72x^{12} + 324x^{8} + 11664x^{4} + 26244 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(7745861623526935561764864\) \(\medspace = 2^{70}\cdot 3^{8}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(35.94\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{305/64}3^{1/2}\approx 47.11472932657837$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3}a^{2}$, $\frac{1}{3}a^{3}$, $\frac{1}{9}a^{4}$, $\frac{1}{9}a^{5}$, $\frac{1}{27}a^{6}$, $\frac{1}{27}a^{7}$, $\frac{1}{648}a^{8}-\frac{1}{54}a^{6}+\frac{1}{4}$, $\frac{1}{648}a^{9}-\frac{1}{54}a^{7}+\frac{1}{4}a$, $\frac{1}{1944}a^{10}+\frac{1}{12}a^{2}$, $\frac{1}{1944}a^{11}+\frac{1}{12}a^{3}$, $\frac{1}{5832}a^{12}+\frac{1}{36}a^{4}$, $\frac{1}{5832}a^{13}+\frac{1}{36}a^{5}$, $\frac{1}{34992}a^{14}-\frac{1}{54}a^{7}+\frac{1}{216}a^{6}-\frac{1}{18}a^{4}$, $\frac{1}{34992}a^{15}+\frac{1}{216}a^{7}-\frac{1}{18}a^{5}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $9$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{1944}a^{10}-\frac{1}{27}a^{6}+\frac{5}{12}a^{2}$, $\frac{1}{1944}a^{10}-\frac{1}{27}a^{6}+\frac{1}{12}a^{2}$, $\frac{1}{8748}a^{14}+\frac{1}{5832}a^{12}+\frac{17}{1944}a^{10}-\frac{1}{72}a^{8}-\frac{2}{27}a^{6}+\frac{5}{36}a^{4}-\frac{5}{4}a^{2}+\frac{7}{4}$, $\frac{1}{17496}a^{14}+\frac{1}{216}a^{10}-\frac{5}{108}a^{6}-\frac{7}{12}a^{2}$, $\frac{1}{8748}a^{14}-\frac{17}{1944}a^{10}-\frac{1}{648}a^{8}+\frac{2}{27}a^{6}+\frac{1}{9}a^{4}+\frac{5}{4}a^{2}-\frac{1}{4}$, $\frac{5}{17496}a^{15}-\frac{1}{17496}a^{14}+\frac{1}{2916}a^{13}+\frac{1}{1458}a^{12}+\frac{41}{1944}a^{11}+\frac{7}{1944}a^{10}-\frac{17}{648}a^{9}-\frac{17}{324}a^{8}-\frac{5}{36}a^{7}-\frac{1}{108}a^{6}+\frac{1}{6}a^{5}+\frac{1}{3}a^{4}-\frac{35}{12}a^{3}-\frac{5}{12}a^{2}+\frac{15}{4}a+\frac{15}{2}$, $\frac{1}{17496}a^{15}-\frac{1}{4374}a^{14}+\frac{1}{2916}a^{13}-\frac{1}{5832}a^{12}-\frac{1}{216}a^{11}+\frac{35}{1944}a^{10}-\frac{17}{648}a^{9}+\frac{5}{324}a^{8}+\frac{7}{108}a^{7}-\frac{5}{27}a^{6}+\frac{5}{18}a^{5}-\frac{5}{36}a^{4}+\frac{1}{4}a^{3}-\frac{13}{12}a^{2}+\frac{7}{4}a-\frac{3}{2}$, $\frac{13}{8748}a^{15}+\frac{1}{324}a^{14}-\frac{23}{2916}a^{13}+\frac{2}{243}a^{12}-\frac{1}{9}a^{11}-\frac{56}{243}a^{10}+\frac{191}{324}a^{9}-\frac{11}{18}a^{8}+\frac{43}{54}a^{7}+\frac{29}{18}a^{6}-\frac{25}{6}a^{5}+4a^{4}+\frac{44}{3}a^{3}+32a^{2}-\frac{161}{2}a+90$, $\frac{31}{34992}a^{15}-\frac{5}{4374}a^{14}+\frac{13}{5832}a^{13}-\frac{23}{5832}a^{12}-\frac{113}{1944}a^{11}+\frac{133}{1944}a^{10}-\frac{83}{648}a^{9}+\frac{5}{24}a^{8}+\frac{11}{216}a^{7}+\frac{5}{18}a^{6}-\frac{11}{12}a^{5}+\frac{101}{36}a^{4}+\frac{31}{12}a^{3}+\frac{7}{4}a^{2}-\frac{7}{4}a+\frac{11}{4}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2364275.9773017 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 2364275.9773017 \cdot 1}{2\cdot\sqrt{7745861623526935561764864}}\cr\approx \mathstrut & 0.41815038360334 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 72*x^12 + 324*x^8 + 11664*x^4 + 26244) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 72*x^12 + 324*x^8 + 11664*x^4 + 26244, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 72*x^12 + 324*x^8 + 11664*x^4 + 26244); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 72*x^12 + 324*x^8 + 11664*x^4 + 26244); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4^2.(C_2\times C_4)$ (as 16T362):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 128
The 14 conjugacy class representatives for $C_4^2.(C_2\times C_4)$
Character table for $C_4^2.(C_2\times C_4)$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.4.268435456.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: deg 32, deg 32, deg 32, deg 32, deg 32
Arithmetically equivalent sibling: 16.4.7745861623526935561764864.184
Minimal sibling: 16.4.7745861623526935561764864.184

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.16.70e1.3401$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 24 x^{4} + 2$$16$$1$$70$16T362$$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]$$
\(3\) Copy content Toggle raw display 3.4.2.4a1.2$x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$
3.4.2.4a1.2$x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)