Normalized defining polynomial
\( x^{16} - 4x^{14} - 2x^{12} - 38x^{8} + 8x^{6} + 64x^{4} - 64x^{2} + 4 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[4, 6]$ |
| |
Discriminant: |
\(7036874417766400000000\)
\(\medspace = 2^{54}\cdot 5^{8}\)
|
| |
Root discriminant: | \(23.20\) |
| |
Galois root discriminant: | not computed | ||
Ramified primes: |
\(2\), \(5\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{1844686}a^{14}+\frac{265563}{1844686}a^{12}-\frac{171795}{922343}a^{10}+\frac{305117}{1844686}a^{8}+\frac{125704}{922343}a^{6}-\frac{448370}{922343}a^{4}+\frac{360856}{922343}a^{2}+\frac{7620}{922343}$, $\frac{1}{1844686}a^{15}+\frac{265563}{1844686}a^{13}-\frac{171795}{922343}a^{11}+\frac{305117}{1844686}a^{9}+\frac{125704}{922343}a^{7}-\frac{448370}{922343}a^{5}+\frac{360856}{922343}a^{3}+\frac{7620}{922343}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{23124}{922343}a^{14}-\frac{80882}{922343}a^{12}-\frac{112558}{922343}a^{10}+\frac{125459}{1844686}a^{8}-\frac{891680}{922343}a^{6}-\frac{100434}{922343}a^{4}+\frac{1838732}{922343}a^{2}-\frac{847609}{922343}$, $\frac{40460}{922343}a^{14}-\frac{311597}{1844686}a^{12}-\frac{97704}{922343}a^{10}-\frac{132127}{1844686}a^{8}-\frac{1475610}{922343}a^{6}+\frac{106191}{922343}a^{4}+\frac{2777512}{922343}a^{2}-\frac{2281753}{922343}$, $\frac{10699}{922343}a^{14}-\frac{38149}{1844686}a^{12}-\frac{142767}{1844686}a^{10}-\frac{372531}{1844686}a^{8}-\frac{660339}{922343}a^{6}-\frac{931717}{922343}a^{4}-\frac{258908}{922343}a^{2}-\frac{201951}{922343}$, $\frac{23124}{922343}a^{14}-\frac{80882}{922343}a^{12}-\frac{112558}{922343}a^{10}+\frac{125459}{1844686}a^{8}-\frac{891680}{922343}a^{6}-\frac{100434}{922343}a^{4}+\frac{1838732}{922343}a^{2}-a-\frac{847609}{922343}$, $\frac{172}{922343}a^{14}+\frac{41715}{1844686}a^{12}-\frac{67528}{922343}a^{10}-\frac{93427}{922343}a^{8}-\frac{107945}{922343}a^{6}-\frac{1130342}{922343}a^{4}-\frac{381841}{922343}a^{2}-\frac{145749}{922343}$, $\frac{45265}{922343}a^{15}+\frac{24555}{1844686}a^{14}-\frac{187124}{922343}a^{13}-\frac{65545}{1844686}a^{12}-\frac{53684}{922343}a^{11}-\frac{181029}{1844686}a^{10}-\frac{43077}{922343}a^{9}-\frac{22127}{922343}a^{8}-\frac{1729500}{922343}a^{7}-\frac{420301}{922343}a^{6}+\frac{456987}{922343}a^{5}-\frac{639302}{922343}a^{4}+\frac{2593992}{922343}a^{3}+\frac{792222}{922343}a^{2}-\frac{2840993}{922343}a-\frac{126529}{922343}$, $\frac{73194}{922343}a^{15}-\frac{105475}{1844686}a^{14}-\frac{598663}{1844686}a^{13}+\frac{188571}{922343}a^{12}-\frac{122222}{922343}a^{11}+\frac{376437}{1844686}a^{10}+\frac{42639}{922343}a^{9}+\frac{176381}{1844686}a^{8}-\frac{2875070}{922343}a^{7}+\frac{1895911}{922343}a^{6}+\frac{707349}{922343}a^{5}+\frac{533111}{922343}a^{4}+\frac{5171547}{922343}a^{3}-\frac{2647391}{922343}a^{2}-\frac{5170185}{922343}a+\frac{1485939}{922343}$, $\frac{63584}{922343}a^{15}-\frac{12083}{1844686}a^{14}-\frac{473361}{1844686}a^{13}+\frac{16784}{922343}a^{12}-\frac{210262}{922343}a^{11}+\frac{132127}{1844686}a^{10}-\frac{3334}{922343}a^{9}-\frac{61870}{922343}a^{8}-\frac{2367290}{922343}a^{7}+\frac{217489}{922343}a^{6}+\frac{5757}{922343}a^{5}-\frac{188072}{922343}a^{4}+\frac{4616244}{922343}a^{3}-\frac{1230030}{922343}a^{2}-\frac{2207019}{922343}a-\frac{760503}{922343}$, $\frac{73022}{922343}a^{15}-\frac{23296}{922343}a^{14}-\frac{320189}{922343}a^{13}+\frac{120049}{1844686}a^{12}-\frac{54694}{922343}a^{11}+\frac{180086}{922343}a^{10}+\frac{136066}{922343}a^{9}+\frac{61395}{1844686}a^{8}-\frac{2767125}{922343}a^{7}+\frac{999625}{922343}a^{6}+\frac{1837691}{922343}a^{5}+\frac{1230776}{922343}a^{4}+\frac{5553388}{922343}a^{3}-\frac{1456891}{922343}a^{2}-\frac{6869122}{922343}a-\frac{851328}{922343}$
|
| |
Regulator: | \( 49937.7677807 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 49937.7677807 \cdot 1}{2\cdot\sqrt{7036874417766400000000}}\cr\approx \mathstrut & 0.293027528660 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.400.1, 8.2.163840000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.6.7036874417766400000000.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{6}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{5}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.54a2.4969 | $x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 268 x^{12} + 528 x^{11} + 892 x^{10} + 1328 x^{9} + 1753 x^{8} + 2040 x^{7} + 2060 x^{6} + 1768 x^{5} + 1268 x^{4} + 736 x^{3} + 340 x^{2} + 112 x + 31$ | $8$ | $2$ | $54$ | 16T1455 | $$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4, \frac{9}{2}, \frac{9}{2}]^{2}$$ |
\(5\)
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |