Normalized defining polynomial
\( x^{16} - 60x^{12} - 306x^{8} - 108x^{4} + 81 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[4, 6]$ |
| |
Discriminant: |
\(627414791505681780502953984\)
\(\medspace = 2^{70}\cdot 3^{12}\)
|
| |
Root discriminant: | \(47.30\) |
| |
Galois root discriminant: | $2^{305/64}3^{3/4}\approx 62.00647089400047$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}$, $\frac{1}{3}a^{5}$, $\frac{1}{6}a^{6}-\frac{1}{6}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{7}-\frac{1}{6}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{18}a^{8}-\frac{1}{2}$, $\frac{1}{18}a^{9}-\frac{1}{2}a$, $\frac{1}{54}a^{10}-\frac{1}{18}a^{6}-\frac{1}{6}a^{4}+\frac{1}{3}a^{2}-\frac{1}{2}$, $\frac{1}{108}a^{11}-\frac{1}{108}a^{10}-\frac{1}{36}a^{9}-\frac{1}{36}a^{8}+\frac{1}{18}a^{7}-\frac{1}{18}a^{6}-\frac{1}{6}a^{5}-\frac{1}{6}a^{4}+\frac{5}{12}a^{3}-\frac{5}{12}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{756}a^{12}-\frac{1}{252}a^{8}+\frac{1}{28}a^{4}-\frac{3}{28}$, $\frac{1}{756}a^{13}-\frac{1}{252}a^{9}+\frac{1}{28}a^{5}-\frac{3}{28}a$, $\frac{1}{2268}a^{14}-\frac{1}{756}a^{10}+\frac{17}{252}a^{6}-\frac{1}{6}a^{4}+\frac{13}{28}a^{2}-\frac{1}{2}$, $\frac{1}{2268}a^{15}-\frac{1}{756}a^{11}+\frac{17}{252}a^{7}-\frac{1}{6}a^{5}+\frac{13}{28}a^{3}-\frac{1}{2}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{2}{189}a^{12}+\frac{9}{14}a^{8}+\frac{19}{7}a^{4}-\frac{9}{14}$, $\frac{37}{2268}a^{14}-\frac{737}{756}a^{10}-\frac{439}{84}a^{6}-\frac{251}{84}a^{2}$, $\frac{25}{756}a^{14}+\frac{1}{84}a^{12}+\frac{1489}{756}a^{10}-\frac{59}{84}a^{8}+\frac{2771}{252}a^{6}-\frac{365}{84}a^{4}+\frac{659}{84}a^{2}-\frac{139}{28}$, $\frac{37}{2268}a^{14}+\frac{19}{756}a^{12}-\frac{737}{756}a^{10}-\frac{383}{252}a^{8}-\frac{439}{84}a^{6}-\frac{587}{84}a^{4}-\frac{251}{84}a^{2}-\frac{1}{28}$, $\frac{37}{1134}a^{14}-\frac{1}{63}a^{12}+\frac{737}{378}a^{10}+\frac{59}{63}a^{8}+\frac{439}{42}a^{6}+\frac{124}{21}a^{4}+\frac{293}{42}a^{2}+\frac{30}{7}$, $\frac{7}{324}a^{15}-\frac{20}{567}a^{14}+\frac{5}{252}a^{13}+\frac{5}{126}a^{12}+\frac{47}{36}a^{11}+\frac{398}{189}a^{10}-\frac{103}{84}a^{9}-\frac{103}{42}a^{8}+\frac{215}{36}a^{7}+\frac{1441}{126}a^{6}-\frac{319}{84}a^{5}-\frac{52}{7}a^{4}+\frac{55}{12}a^{3}+\frac{103}{14}a^{2}-\frac{59}{28}a-\frac{26}{7}$, $\frac{20}{567}a^{15}+\frac{17}{2268}a^{14}-\frac{5}{189}a^{13}-\frac{1}{126}a^{12}-\frac{398}{189}a^{11}-\frac{113}{252}a^{10}+\frac{199}{126}a^{9}+\frac{59}{126}a^{8}-\frac{1441}{126}a^{7}-\frac{607}{252}a^{6}+\frac{355}{42}a^{5}+\frac{55}{21}a^{4}-\frac{103}{14}a^{3}-\frac{107}{84}a^{2}+\frac{43}{7}a+\frac{15}{7}$, $\frac{13}{756}a^{15}+\frac{23}{756}a^{14}+\frac{13}{756}a^{13}+\frac{11}{252}a^{12}+\frac{767}{756}a^{11}-\frac{1427}{756}a^{10}-\frac{293}{252}a^{9}-\frac{691}{252}a^{8}+\frac{1591}{252}a^{7}-\frac{1333}{252}a^{6}+\frac{263}{84}a^{5}-\frac{461}{84}a^{4}+\frac{481}{84}a^{3}-\frac{277}{84}a^{2}+\frac{73}{28}a-\frac{29}{28}$, $\frac{47}{108}a^{15}+\frac{386}{567}a^{14}+\frac{397}{756}a^{13}+\frac{43}{756}a^{12}-\frac{2863}{108}a^{11}-\frac{2609}{63}a^{10}-\frac{8041}{252}a^{9}-\frac{869}{252}a^{8}-\frac{3923}{36}a^{7}-\frac{21911}{126}a^{6}-\frac{3817}{28}a^{5}-\frac{1285}{84}a^{4}+\frac{673}{12}a^{3}+\frac{3011}{42}a^{2}+\frac{1259}{28}a+\frac{95}{28}$
|
| |
Regulator: | \( 40271886.96234334 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 40271886.96234334 \cdot 1}{2\cdot\sqrt{627414791505681780502953984}}\cr\approx \mathstrut & 0.791395906936057 \end{aligned}\] (assuming GRH)
Galois group
$C_4^2.(C_2\times C_4)$ (as 16T362):
A solvable group of order 128 |
The 14 conjugacy class representatives for $C_4^2.(C_2\times C_4)$ |
Character table for $C_4^2.(C_2\times C_4)$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.4.18432.1, 8.4.21743271936.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | deg 32, deg 32, deg 32, deg 32, deg 32 |
Arithmetically equivalent sibling: | 16.4.627414791505681780502953984.201 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.2.0.1}{2} }^{6}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.70e1.3299 | $x^{16} + 16 x^{15} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 8 x^{4} + 18$ | $16$ | $1$ | $70$ | 16T362 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]$$ |
\(3\)
| 3.2.4.6a1.1 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 16$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $$[\ ]_{4}^{4}$$ |
3.2.4.6a1.1 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 16$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $$[\ ]_{4}^{4}$$ |