Properties

Label 16.4.627...984.196
Degree $16$
Signature $[4, 6]$
Discriminant $6.274\times 10^{26}$
Root discriminant \(47.30\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_4^2.(C_2\times C_4)$ (as 16T362)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 60*x^12 - 306*x^8 - 108*x^4 + 81)
 
Copy content gp:K = bnfinit(y^16 - 60*y^12 - 306*y^8 - 108*y^4 + 81, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 60*x^12 - 306*x^8 - 108*x^4 + 81);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 60*x^12 - 306*x^8 - 108*x^4 + 81)
 

\( x^{16} - 60x^{12} - 306x^{8} - 108x^{4} + 81 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(627414791505681780502953984\) \(\medspace = 2^{70}\cdot 3^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(47.30\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{305/64}3^{3/4}\approx 62.00647089400047$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}$, $\frac{1}{3}a^{5}$, $\frac{1}{6}a^{6}-\frac{1}{6}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{7}-\frac{1}{6}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{18}a^{8}-\frac{1}{2}$, $\frac{1}{18}a^{9}-\frac{1}{2}a$, $\frac{1}{54}a^{10}-\frac{1}{18}a^{6}-\frac{1}{6}a^{4}+\frac{1}{3}a^{2}-\frac{1}{2}$, $\frac{1}{108}a^{11}-\frac{1}{108}a^{10}-\frac{1}{36}a^{9}-\frac{1}{36}a^{8}+\frac{1}{18}a^{7}-\frac{1}{18}a^{6}-\frac{1}{6}a^{5}-\frac{1}{6}a^{4}+\frac{5}{12}a^{3}-\frac{5}{12}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{756}a^{12}-\frac{1}{252}a^{8}+\frac{1}{28}a^{4}-\frac{3}{28}$, $\frac{1}{756}a^{13}-\frac{1}{252}a^{9}+\frac{1}{28}a^{5}-\frac{3}{28}a$, $\frac{1}{2268}a^{14}-\frac{1}{756}a^{10}+\frac{17}{252}a^{6}-\frac{1}{6}a^{4}+\frac{13}{28}a^{2}-\frac{1}{2}$, $\frac{1}{2268}a^{15}-\frac{1}{756}a^{11}+\frac{17}{252}a^{7}-\frac{1}{6}a^{5}+\frac{13}{28}a^{3}-\frac{1}{2}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $9$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{2}{189}a^{12}+\frac{9}{14}a^{8}+\frac{19}{7}a^{4}-\frac{9}{14}$, $\frac{37}{2268}a^{14}-\frac{737}{756}a^{10}-\frac{439}{84}a^{6}-\frac{251}{84}a^{2}$, $\frac{25}{756}a^{14}+\frac{1}{84}a^{12}+\frac{1489}{756}a^{10}-\frac{59}{84}a^{8}+\frac{2771}{252}a^{6}-\frac{365}{84}a^{4}+\frac{659}{84}a^{2}-\frac{139}{28}$, $\frac{37}{2268}a^{14}+\frac{19}{756}a^{12}-\frac{737}{756}a^{10}-\frac{383}{252}a^{8}-\frac{439}{84}a^{6}-\frac{587}{84}a^{4}-\frac{251}{84}a^{2}-\frac{1}{28}$, $\frac{37}{1134}a^{14}-\frac{1}{63}a^{12}+\frac{737}{378}a^{10}+\frac{59}{63}a^{8}+\frac{439}{42}a^{6}+\frac{124}{21}a^{4}+\frac{293}{42}a^{2}+\frac{30}{7}$, $\frac{7}{324}a^{15}-\frac{20}{567}a^{14}+\frac{5}{252}a^{13}+\frac{5}{126}a^{12}+\frac{47}{36}a^{11}+\frac{398}{189}a^{10}-\frac{103}{84}a^{9}-\frac{103}{42}a^{8}+\frac{215}{36}a^{7}+\frac{1441}{126}a^{6}-\frac{319}{84}a^{5}-\frac{52}{7}a^{4}+\frac{55}{12}a^{3}+\frac{103}{14}a^{2}-\frac{59}{28}a-\frac{26}{7}$, $\frac{20}{567}a^{15}+\frac{17}{2268}a^{14}-\frac{5}{189}a^{13}-\frac{1}{126}a^{12}-\frac{398}{189}a^{11}-\frac{113}{252}a^{10}+\frac{199}{126}a^{9}+\frac{59}{126}a^{8}-\frac{1441}{126}a^{7}-\frac{607}{252}a^{6}+\frac{355}{42}a^{5}+\frac{55}{21}a^{4}-\frac{103}{14}a^{3}-\frac{107}{84}a^{2}+\frac{43}{7}a+\frac{15}{7}$, $\frac{13}{756}a^{15}+\frac{23}{756}a^{14}+\frac{13}{756}a^{13}+\frac{11}{252}a^{12}+\frac{767}{756}a^{11}-\frac{1427}{756}a^{10}-\frac{293}{252}a^{9}-\frac{691}{252}a^{8}+\frac{1591}{252}a^{7}-\frac{1333}{252}a^{6}+\frac{263}{84}a^{5}-\frac{461}{84}a^{4}+\frac{481}{84}a^{3}-\frac{277}{84}a^{2}+\frac{73}{28}a-\frac{29}{28}$, $\frac{47}{108}a^{15}+\frac{386}{567}a^{14}+\frac{397}{756}a^{13}+\frac{43}{756}a^{12}-\frac{2863}{108}a^{11}-\frac{2609}{63}a^{10}-\frac{8041}{252}a^{9}-\frac{869}{252}a^{8}-\frac{3923}{36}a^{7}-\frac{21911}{126}a^{6}-\frac{3817}{28}a^{5}-\frac{1285}{84}a^{4}+\frac{673}{12}a^{3}+\frac{3011}{42}a^{2}+\frac{1259}{28}a+\frac{95}{28}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 40271886.96234334 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 40271886.96234334 \cdot 1}{2\cdot\sqrt{627414791505681780502953984}}\cr\approx \mathstrut & 0.791395906936057 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 60*x^12 - 306*x^8 - 108*x^4 + 81) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 60*x^12 - 306*x^8 - 108*x^4 + 81, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 60*x^12 - 306*x^8 - 108*x^4 + 81); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 60*x^12 - 306*x^8 - 108*x^4 + 81); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4^2.(C_2\times C_4)$ (as 16T362):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 128
The 14 conjugacy class representatives for $C_4^2.(C_2\times C_4)$
Character table for $C_4^2.(C_2\times C_4)$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.18432.1, 8.4.21743271936.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: deg 32, deg 32, deg 32, deg 32, deg 32
Arithmetically equivalent sibling: 16.4.627414791505681780502953984.201
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.2.0.1}{2} }^{6}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.16.70e1.3299$x^{16} + 16 x^{15} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 8 x^{4} + 18$$16$$1$$70$16T362$$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]$$
\(3\) Copy content Toggle raw display 3.2.4.6a1.1$x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 16$$4$$2$$6$$C_8:C_2$$$[\ ]_{4}^{4}$$
3.2.4.6a1.1$x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 16$$4$$2$$6$$C_8:C_2$$$[\ ]_{4}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)