Normalized defining polynomial
\( x^{16} - 3 x^{15} + 10 x^{14} - 36 x^{13} - 45 x^{12} + 334 x^{11} - 90 x^{10} - 918 x^{9} + 1057 x^{8} + \cdots + 293 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[4, 6]$ |
| |
Discriminant: |
\(52703064995487500398531609\)
\(\medspace = 17^{12}\cdot 67^{6}\)
|
| |
Root discriminant: | \(40.51\) |
| |
Galois root discriminant: | $17^{3/4}67^{1/2}\approx 68.52895233095656$ | ||
Ramified primes: |
\(17\), \(67\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11\cdots 11}a^{15}+\frac{22\cdots 11}{11\cdots 11}a^{14}-\frac{26\cdots 00}{11\cdots 11}a^{13}+\frac{40\cdots 22}{91\cdots 47}a^{12}-\frac{57\cdots 28}{11\cdots 11}a^{11}-\frac{42\cdots 04}{91\cdots 47}a^{10}-\frac{50\cdots 76}{11\cdots 11}a^{9}-\frac{40\cdots 42}{91\cdots 47}a^{8}-\frac{56\cdots 79}{11\cdots 11}a^{7}-\frac{56\cdots 54}{11\cdots 11}a^{6}+\frac{15\cdots 61}{11\cdots 11}a^{5}-\frac{27\cdots 90}{11\cdots 11}a^{4}-\frac{32\cdots 57}{11\cdots 11}a^{3}+\frac{51\cdots 46}{11\cdots 11}a^{2}+\frac{26\cdots 67}{11\cdots 11}a-\frac{57\cdots 44}{11\cdots 11}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{16\cdots 50}{91\cdots 47}a^{15}-\frac{31\cdots 56}{91\cdots 47}a^{14}+\frac{12\cdots 97}{91\cdots 47}a^{13}-\frac{44\cdots 38}{91\cdots 47}a^{12}-\frac{11\cdots 12}{91\cdots 47}a^{11}+\frac{41\cdots 57}{91\cdots 47}a^{10}+\frac{28\cdots 59}{91\cdots 47}a^{9}-\frac{11\cdots 39}{91\cdots 47}a^{8}+\frac{47\cdots 26}{91\cdots 47}a^{7}+\frac{98\cdots 72}{91\cdots 47}a^{6}-\frac{42\cdots 08}{91\cdots 47}a^{5}+\frac{82\cdots 22}{91\cdots 47}a^{4}-\frac{66\cdots 83}{91\cdots 47}a^{3}+\frac{10\cdots 13}{91\cdots 47}a^{2}+\frac{12\cdots 56}{91\cdots 47}a-\frac{44\cdots 03}{91\cdots 47}$, $\frac{77\cdots 19}{91\cdots 47}a^{15}-\frac{13\cdots 08}{91\cdots 47}a^{14}+\frac{60\cdots 08}{91\cdots 47}a^{13}-\frac{20\cdots 61}{91\cdots 47}a^{12}-\frac{59\cdots 93}{91\cdots 47}a^{11}+\frac{18\cdots 11}{91\cdots 47}a^{10}+\frac{15\cdots 44}{91\cdots 47}a^{9}-\frac{52\cdots 63}{91\cdots 47}a^{8}+\frac{17\cdots 51}{91\cdots 47}a^{7}+\frac{45\cdots 68}{91\cdots 47}a^{6}-\frac{19\cdots 18}{91\cdots 47}a^{5}+\frac{36\cdots 61}{91\cdots 47}a^{4}-\frac{28\cdots 22}{91\cdots 47}a^{3}+\frac{37\cdots 43}{91\cdots 47}a^{2}+\frac{53\cdots 79}{91\cdots 47}a-\frac{18\cdots 79}{91\cdots 47}$, $\frac{84\cdots 31}{91\cdots 47}a^{15}-\frac{17\cdots 48}{91\cdots 47}a^{14}+\frac{68\cdots 89}{91\cdots 47}a^{13}-\frac{24\cdots 77}{91\cdots 47}a^{12}-\frac{59\cdots 19}{91\cdots 47}a^{11}+\frac{22\cdots 46}{91\cdots 47}a^{10}+\frac{12\cdots 15}{91\cdots 47}a^{9}-\frac{65\cdots 76}{91\cdots 47}a^{8}+\frac{29\cdots 75}{91\cdots 47}a^{7}+\frac{53\cdots 04}{91\cdots 47}a^{6}-\frac{22\cdots 90}{91\cdots 47}a^{5}+\frac{45\cdots 61}{91\cdots 47}a^{4}-\frac{38\cdots 61}{91\cdots 47}a^{3}+\frac{66\cdots 70}{91\cdots 47}a^{2}+\frac{67\cdots 77}{91\cdots 47}a-\frac{25\cdots 24}{91\cdots 47}$, $\frac{61\cdots 82}{91\cdots 47}a^{15}-\frac{13\cdots 84}{91\cdots 47}a^{14}+\frac{51\cdots 83}{91\cdots 47}a^{13}-\frac{18\cdots 88}{91\cdots 47}a^{12}-\frac{41\cdots 46}{91\cdots 47}a^{11}+\frac{17\cdots 65}{91\cdots 47}a^{10}+\frac{76\cdots 96}{91\cdots 47}a^{9}-\frac{50\cdots 01}{91\cdots 47}a^{8}+\frac{26\cdots 50}{91\cdots 47}a^{7}+\frac{38\cdots 80}{91\cdots 47}a^{6}-\frac{17\cdots 49}{91\cdots 47}a^{5}+\frac{35\cdots 55}{91\cdots 47}a^{4}-\frac{31\cdots 60}{91\cdots 47}a^{3}+\frac{67\cdots 41}{91\cdots 47}a^{2}+\frac{56\cdots 11}{91\cdots 47}a-\frac{24\cdots 55}{91\cdots 47}$, $a-1$, $\frac{66\cdots 45}{91\cdots 47}a^{15}-\frac{10\cdots 02}{91\cdots 47}a^{14}+\frac{48\cdots 17}{91\cdots 47}a^{13}-\frac{16\cdots 49}{91\cdots 47}a^{12}-\frac{56\cdots 10}{91\cdots 47}a^{11}+\frac{15\cdots 92}{91\cdots 47}a^{10}+\frac{18\cdots 49}{91\cdots 47}a^{9}-\frac{42\cdots 27}{91\cdots 47}a^{8}+\frac{15\cdots 42}{91\cdots 47}a^{7}+\frac{40\cdots 20}{91\cdots 47}a^{6}-\frac{15\cdots 57}{91\cdots 47}a^{5}+\frac{27\cdots 11}{91\cdots 47}a^{4}-\frac{15\cdots 90}{91\cdots 47}a^{3}-\frac{26\cdots 36}{91\cdots 47}a^{2}+\frac{35\cdots 31}{91\cdots 47}a-\frac{20\cdots 04}{91\cdots 47}$, $\frac{17\cdots 07}{11\cdots 11}a^{15}-\frac{37\cdots 41}{11\cdots 11}a^{14}+\frac{13\cdots 25}{11\cdots 11}a^{13}-\frac{38\cdots 17}{91\cdots 47}a^{12}-\frac{11\cdots 77}{11\cdots 11}a^{11}+\frac{36\cdots 80}{91\cdots 47}a^{10}+\frac{24\cdots 00}{11\cdots 11}a^{9}-\frac{10\cdots 07}{91\cdots 47}a^{8}+\frac{63\cdots 33}{11\cdots 11}a^{7}+\frac{10\cdots 46}{11\cdots 11}a^{6}-\frac{46\cdots 53}{11\cdots 11}a^{5}+\frac{94\cdots 51}{11\cdots 11}a^{4}-\frac{80\cdots 20}{11\cdots 11}a^{3}+\frac{14\cdots 39}{11\cdots 11}a^{2}+\frac{15\cdots 42}{11\cdots 11}a-\frac{66\cdots 43}{11\cdots 11}$, $\frac{24\cdots 33}{11\cdots 11}a^{15}-\frac{35\cdots 88}{11\cdots 11}a^{14}+\frac{58\cdots 46}{11\cdots 11}a^{13}-\frac{21\cdots 21}{91\cdots 47}a^{12}+\frac{51\cdots 24}{11\cdots 11}a^{11}+\frac{25\cdots 30}{91\cdots 47}a^{10}-\frac{55\cdots 11}{11\cdots 11}a^{9}-\frac{85\cdots 36}{91\cdots 47}a^{8}+\frac{16\cdots 41}{11\cdots 11}a^{7}+\frac{31\cdots 99}{11\cdots 11}a^{6}-\frac{23\cdots 98}{11\cdots 11}a^{5}+\frac{80\cdots 05}{11\cdots 11}a^{4}-\frac{12\cdots 97}{11\cdots 11}a^{3}+\frac{54\cdots 45}{11\cdots 11}a^{2}+\frac{17\cdots 68}{11\cdots 11}a-\frac{13\cdots 51}{11\cdots 11}$, $\frac{14\cdots 08}{11\cdots 11}a^{15}-\frac{49\cdots 94}{11\cdots 11}a^{14}+\frac{20\cdots 89}{11\cdots 11}a^{13}-\frac{51\cdots 57}{91\cdots 47}a^{12}-\frac{13\cdots 17}{11\cdots 11}a^{11}+\frac{30\cdots 73}{91\cdots 47}a^{10}-\frac{61\cdots 11}{11\cdots 11}a^{9}-\frac{20\cdots 76}{91\cdots 47}a^{8}+\frac{27\cdots 06}{11\cdots 11}a^{7}-\frac{29\cdots 10}{11\cdots 11}a^{6}-\frac{36\cdots 08}{11\cdots 11}a^{5}+\frac{15\cdots 92}{11\cdots 11}a^{4}-\frac{28\cdots 47}{11\cdots 11}a^{3}+\frac{33\cdots 15}{11\cdots 11}a^{2}-\frac{21\cdots 15}{11\cdots 11}a+\frac{53\cdots 63}{11\cdots 11}$
|
| |
Regulator: | \( 3083861.57137 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 3083861.57137 \cdot 1}{2\cdot\sqrt{52703064995487500398531609}}\cr\approx \mathstrut & 0.209096197920 \end{aligned}\] (assuming GRH)
Galois group
$C_4^2.(C_2\times C_4)$ (as 16T362):
A solvable group of order 128 |
The 14 conjugacy class representatives for $C_4^2.(C_2\times C_4)$ |
Character table for $C_4^2.(C_2\times C_4)$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.108353547241.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Arithmetically equivalent siblings: | data not computed |
Minimal sibling: | 16.4.52703064995487500398531609.6 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\)
| 17.2.4.6a1.2 | $x^{8} + 64 x^{7} + 1548 x^{6} + 16960 x^{5} + 74806 x^{4} + 50880 x^{3} + 13932 x^{2} + 1728 x + 98$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
17.2.4.6a1.2 | $x^{8} + 64 x^{7} + 1548 x^{6} + 16960 x^{5} + 74806 x^{4} + 50880 x^{3} + 13932 x^{2} + 1728 x + 98$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(67\)
| $\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
67.1.2.1a1.2 | $x^{2} + 134$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
67.1.2.1a1.1 | $x^{2} + 67$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
67.1.2.1a1.1 | $x^{2} + 67$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
67.2.1.0a1.1 | $x^{2} + 63 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
67.1.2.1a1.1 | $x^{2} + 67$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
67.2.2.2a1.2 | $x^{4} + 126 x^{3} + 3973 x^{2} + 252 x + 71$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |