Normalized defining polynomial
\( x^{16} - 2x^{15} + x^{14} + 2x^{13} - 13x^{12} + 12x^{10} + 7x^{8} + 12x^{6} - 13x^{4} + 2x^{3} + x^{2} - 2x + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(350749278894882816\)
\(\medspace = 2^{16}\cdot 3^{8}\cdot 13^{8}\)
|
| |
| Root discriminant: | \(12.49\) |
| |
| Galois root discriminant: | $2^{3/2}3^{3/4}13^{1/2}\approx 23.246501929569742$ | ||
| Ramified primes: |
\(2\), \(3\), \(13\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{9}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{12387}a^{14}+\frac{440}{4129}a^{13}-\frac{509}{4129}a^{12}-\frac{931}{12387}a^{11}+\frac{1174}{12387}a^{10}-\frac{3674}{12387}a^{9}-\frac{2486}{12387}a^{8}+\frac{3866}{12387}a^{7}+\frac{1643}{12387}a^{6}+\frac{1528}{4129}a^{5}-\frac{985}{4129}a^{4}-\frac{5060}{12387}a^{3}-\frac{5656}{12387}a^{2}+\frac{440}{4129}a+\frac{4130}{12387}$, $\frac{1}{12387}a^{15}-\frac{1489}{12387}a^{13}-\frac{81}{4129}a^{12}-\frac{116}{4129}a^{11}-\frac{850}{12387}a^{10}-\frac{4381}{12387}a^{9}-\frac{1298}{12387}a^{8}+\frac{2032}{4129}a^{7}+\frac{1183}{4129}a^{6}-\frac{721}{12387}a^{5}-\frac{2236}{12387}a^{4}-\frac{3049}{12387}a^{3}-\frac{707}{4129}a^{2}+\frac{13}{4129}a+\frac{2809}{12387}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2902}{12387}a^{15}-\frac{1552}{4129}a^{14}+\frac{1382}{4129}a^{13}+\frac{149}{4129}a^{12}-\frac{10679}{4129}a^{11}-\frac{9293}{12387}a^{10}-\frac{9032}{12387}a^{9}+\frac{8339}{12387}a^{8}+\frac{16573}{4129}a^{7}+\frac{15088}{12387}a^{6}+\frac{70951}{12387}a^{5}+\frac{19084}{12387}a^{4}+\frac{7793}{12387}a^{3}+\frac{257}{4129}a^{2}-\frac{20918}{12387}a-\frac{3584}{12387}$, $a$, $\frac{2999}{4129}a^{15}-\frac{15413}{12387}a^{14}+\frac{4624}{12387}a^{13}+\frac{6322}{4129}a^{12}-\frac{37143}{4129}a^{11}-\frac{10343}{4129}a^{10}+\frac{96800}{12387}a^{9}+\frac{31336}{12387}a^{8}+\frac{77597}{12387}a^{7}+\frac{16910}{12387}a^{6}+\frac{113561}{12387}a^{5}+\frac{26515}{12387}a^{4}-\frac{36344}{4129}a^{3}-\frac{10435}{12387}a^{2}-\frac{5788}{12387}a-\frac{8191}{12387}$, $\frac{9031}{12387}a^{15}-\frac{13723}{12387}a^{14}+\frac{557}{12387}a^{13}+\frac{23086}{12387}a^{12}-\frac{111115}{12387}a^{11}-\frac{53660}{12387}a^{10}+\frac{105704}{12387}a^{9}+\frac{38734}{12387}a^{8}+\frac{71615}{12387}a^{7}+\frac{12111}{4129}a^{6}+\frac{38259}{4129}a^{5}+\frac{24124}{4129}a^{4}-\frac{122101}{12387}a^{3}-\frac{28877}{12387}a^{2}+\frac{4936}{12387}a-\frac{8869}{4129}$, $\frac{641}{4129}a^{15}-\frac{145}{4129}a^{14}-\frac{2219}{12387}a^{13}+\frac{2893}{12387}a^{12}-\frac{5493}{4129}a^{11}-\frac{13150}{4129}a^{10}-\frac{9494}{12387}a^{9}+\frac{30506}{12387}a^{8}+\frac{10734}{4129}a^{7}+\frac{32134}{12387}a^{6}+\frac{46547}{12387}a^{5}+\frac{49315}{12387}a^{4}+\frac{20941}{12387}a^{3}-\frac{24529}{12387}a^{2}-\frac{11981}{12387}a-\frac{3589}{12387}$, $\frac{2235}{4129}a^{15}-\frac{9334}{12387}a^{14}+\frac{233}{12387}a^{13}+\frac{4579}{4129}a^{12}-\frac{25456}{4129}a^{11}-\frac{50528}{12387}a^{10}+\frac{58678}{12387}a^{9}+\frac{53863}{12387}a^{8}+\frac{21620}{4129}a^{7}+\frac{24736}{12387}a^{6}+\frac{31121}{4129}a^{5}+\frac{37430}{12387}a^{4}-\frac{68521}{12387}a^{3}-\frac{14203}{4129}a^{2}-\frac{2705}{12387}a-\frac{3229}{12387}$, $\frac{5952}{4129}a^{15}-\frac{30572}{12387}a^{14}+\frac{3037}{4129}a^{13}+\frac{38702}{12387}a^{12}-\frac{221374}{12387}a^{11}-\frac{21197}{4129}a^{10}+\frac{195302}{12387}a^{9}+\frac{17385}{4129}a^{8}+\frac{134879}{12387}a^{7}+\frac{35702}{12387}a^{6}+\frac{78580}{4129}a^{5}+\frac{77605}{12387}a^{4}-\frac{70441}{4129}a^{3}-\frac{2892}{4129}a^{2}+\frac{9764}{4129}a-\frac{10720}{4129}$, $\frac{10280}{12387}a^{15}-\frac{6139}{4129}a^{14}+\frac{8653}{12387}a^{13}+\frac{16661}{12387}a^{12}-\frac{122977}{12387}a^{11}-\frac{9308}{4129}a^{10}+\frac{30432}{4129}a^{9}+\frac{36830}{12387}a^{8}+\frac{25241}{4129}a^{7}+\frac{10444}{12387}a^{6}+\frac{150454}{12387}a^{5}+\frac{6198}{4129}a^{4}-\frac{76313}{12387}a^{3}-\frac{19136}{12387}a^{2}+\frac{18035}{12387}a-\frac{3955}{4129}$, $\frac{6665}{12387}a^{15}-\frac{7867}{12387}a^{14}-\frac{2203}{12387}a^{13}+\frac{17137}{12387}a^{12}-\frac{26014}{4129}a^{11}-\frac{65611}{12387}a^{10}+\frac{59087}{12387}a^{9}+\frac{34535}{12387}a^{8}+\frac{62807}{12387}a^{7}+\frac{23885}{4129}a^{6}+\frac{96016}{12387}a^{5}+\frac{25929}{4129}a^{4}-\frac{16288}{4129}a^{3}-\frac{26024}{12387}a^{2}-\frac{1442}{4129}a-\frac{27413}{12387}$
|
| |
| Regulator: | \( 218.035986284 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 218.035986284 \cdot 1}{2\cdot\sqrt{350749278894882816}}\cr\approx \mathstrut & 0.181217019171 \end{aligned}\]
Galois group
$C_4^2:D_4$ (as 16T382):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_4^2:D_4$ |
| Character table for $C_4^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.2.507.1, 4.2.2704.1, 4.4.8112.1, 8.4.65804544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.168110601127133184.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{8}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.8.2.16a33.1 | $x^{16} + 2 x^{15} + 2 x^{14} + 4 x^{12} + 4 x^{11} + 8 x^{10} + 6 x^{9} + 7 x^{8} + 6 x^{7} + 9 x^{6} + 6 x^{5} + 9 x^{4} + 4 x^{3} + 4 x^{2} + 2 x + 3$ | $2$ | $8$ | $16$ | $C_2^2 : C_8$ | $$[2, 2]^{8}$$ |
|
\(3\)
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ | |
|
\(13\)
| 13.4.2.4a1.2 | $x^{8} + 6 x^{6} + 24 x^{5} + 13 x^{4} + 72 x^{3} + 156 x^{2} + 48 x + 17$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 13.4.2.4a1.2 | $x^{8} + 6 x^{6} + 24 x^{5} + 13 x^{4} + 72 x^{3} + 156 x^{2} + 48 x + 17$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |